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1 EXECUTIVE SUMMARY 

The project will explore a field of robotics, patrol and sentry duty, which has 
only recently become tractable through modern technological and scientific 
advancements. With a novel hardware platform and intelligent software, SigSent 
can assume a unique role. 

Producing a useful end product requires developing new or implementing 
existing solutions for multi-terrain travel, efficient power and time management, 
and simple Human to Robot Interaction (HRI) for both the robot’s supervisor and 
other people encountered during its operation. Improvements in battery storage 
density and computational power have lowered the cost of major components 
driving the design of such a robot.  

SigSent will demonstrate a capable platform which could substitute for a 
human in conducting routine patrol and sentry duties. These duties include 
following predefined paths in either smooth or rough terrains, reliably alerting the 
robot’s supervisor to a potential intruder, and instructing a potential intruder on how 
to proceed.  

The security services industry is a prime candidate for growth through human-
robot cooperation. The Three Ds of Robotics: Dull, Dirty, and Dangerous, are 
applicable to security services due to the repetition of tasks, need for assured 
surveillance, and potential for hostile situations.  

This document contains an analysis of the goals for this system, the 
requirements defining those goals, constraints imposed on accomplishment of 
those goals, research investigating avenues for the implementation of this project, 
design decisions shaping our proposed solution, and current status of the project’s 
progress. Additionally, work yet to be completed will be outlined. 
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2 PROJECT NARRATIVE 

2.1.1 Goals and Objectives 
The goal of SigSent is to create a robot that is capable of intelligently 

patrolling a predefined area and reducing the risk of harm to human sentries. 
SigSent should also enable security professionals to enact a more proactive 
security policy by freeing security guards from repetitive tasks. 

By learning to work in a mixed terrain environment, the robot can effectively 
perform its job as a sentinel irrespective of the landscape in which it is placed.  

By providing a TeleOp functionality to SigSent, operators can manually 
control the robot or direct it to enter an automatic sentry mode. The SigSent bot 
will stream a video feed of its perspective, enabling remote surveillance. With 
multiple SigSent units, a single operator could surveil a much larger area alone. 
When in sentry or patrol mode, SigSent will also alert the operator upon detecting 
unknown activity. This will reduce the workload on security guards by freeing them 
from simultaneous supervision of multiple locations throughout the entirety of their 
shift. The SigSent robot will also be able to match the speed of an average person 
jogging so that it may pursue an intruder if deemed necessary. SigSent will be able 
to deter trespassers with vocal commands, and will also be able to record video of 
trespassers or events for later action by law enforcement.  

In conclusion, SigSent should replace the main duties of a security guard 
and allow guards to perform higher-level tasks with less occupational hazard. 
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2.1.2 Requirements Specifications 
 

Table 1: Requirement Specifications 

Specification Value Units Rationale Ref. 

Sentry Robot Specifications 

Weight 25 kg OSHA limit of safe 
weight to lift 

[1] 

Durability 0.5 m Survive a 0.5m fall. 
Internal benchmark to 
reach. 

 

Reliability 1 yrs Based on Life cycle of 
parts (Servo motors, 
motors, etc.) 

 

Availability 75 % Robot will need 25% 
availability for 
maintenance and repair. 

 

Speed Characteristics 

Wheel Top 
speed 

12 mph Average speed of a male 
human running ranges 
from 10 to 15 mph 

[2] 

Rough Terrain 
Top speed 

1 mph ⅓ the normal walking 
speed of a male human. 
Internal benchmark to 
reach. 

 

Battery Life 

Static Monitoring 
Span 

3 hrs To be competitively 
better than our 
competitors, iPatrol, with 
a battery life of 1.5 hours 

[3] 
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Walking 
Lifespan 

(3mph smooth) 

30 mins For basic, reasonable 
operation of the sentry 
bot. Internal benchmark 
to reach 

 

Jogging 
Lifespan 

(6mph smooth) 

10 mins Internal benchmark to 
reach 

 

Running 
Lifespan 

(12mph smooth) 

3 mins Internal benchmark to 
reach 

 

Rough Terrain 
Lifespan 

(1 mph) 

15 mins Internal benchmark to 
reach 

 

Accuracy Specifications 

GPS waypoint 
finding 

5 m Based on standard 
accuracy of smartphone 
GPS modules under 
open sky conditions 

[4] 

Communication 
distance 

32 m Based on the signal 
power limit allowed by 
FCC regulation for WiFi. 

[5] 

[6] 

Bandwidth 5 Mb/s Based on industry 
accepted requirements 
for high definition video 
streaming. 

[7] 

 

2.1.2.1 Movement Specifications 
The robot must have certain movement capabilities to be considered a 

multi-terrain and accessible device. This means the robot must be able to fit in 
common areas to do its functions. To satisfy this requirement the robot must be 
able to pass through a standard door size opening of 36 inches. This also includes 
the ableness to travel across different smooth and rough surfaces/terrain.  
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Our definition of a smooth surface is: “Any continuous surface with no more 
than a 10-degree incline/decline”. This definition was created with reference from 
the National Highway Traffic Safety Administration and their road regulations for 
paved highways. The list of example smooth surfaces are tile, asphalt, and carpet. 

Our definition of a rough surface is: “Any non-continuous surface with 
instantaneous raises/lower no greater than 6 inches and a max incline/decline of 
15 degrees”. This definition was created with reference from the creation of the 
smooth surface definition. The list of example rough surfaces are forest, rocks, 
stairs, and sand. 

2.1.2.2 Security Functionality 
Being a sentry bot, this robot will require multiple security capabilities. 

• Robot should be able to transmit full quality video to the base station upon 
request. 

• Robot should be able to detect human movement from 10 meters away. 
• Robot should be able to sound a siren heard at 60 dB from 10 meters away. 
• Robot should be able to reliably operate during night. (at full moon, 0.01 

ftcd, lighting)  
• Robot should be able to be teleoperated from the base station. 
• Robot should be able to have a path programmed into it. 

2.1.3 House of Quality 
Below in Figure 1: House of Quality is our house of quality with demo-able 

technical characteristics and their correlation to the characteristics seen by the 
user as important.  

 

Figure 1: House of Quality 
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3 DESIGN CONSTRAINTS AND STANDARDS 

3.1 DESIGN CONSTRAINTS 
The constraints outlined below guided decisions on the overall design and 

marketing direction of the SigSent project. 

3.1.1 Economic 
In its final marketable configuration, SigSent will be strongly constrained by 

its total annual cost per unit. SigSent’s value proposition is that it can supplement 
the utility of existing security personnel, and multiply their presence through a 
networked set of units. SigSent will only be a successful commercial product if it 
offers comparable surveillance capability as a conventional security guard at 
smaller recurring cost. 

The median pay for a security guard in 2016 was $25,840 [8]. This is 
conceivably the uppermost constraint on the annual price an organization would 
pay per SigSent unit. If a SigSent unit were to cost greater than a guard for the 
same capability, the organization would likely hire the additionally employee 
instead. A SigSent unit’s value should be comparable to that of a full-time security 
guard, since the unit offers additional capabilities that a conventional guard 
doesn’t, such as the ready availability of a unit to record all of its visual and auditory 
observations. Additionally, SigSent units may be able to patrol a larger area than 
a conventional guard in the same time due to their greater speed in speed mode. 
SigSent should be able to match the scheduling availability of a guard as well, with 
full-time guards only working 40 hours out of 168 hours in a week, or ~ 24% 
availability. 

With multiple SigSent units networked to one basestation, a single operator 
should be able to simultaneously monitor many areas of interest and respond to 
events as appropriate. The displaced cost of the potential additional guards 
enables businesses to afford SigSent units out of their current budgets. 

By 2026, 70,000 more security guards are projected to be employed. These 
additional employees alone would cost $1.75 billion dollars annually [8]. 

3.1.2 Environmental 
Because it is unable to open doors, SigSent is poorly-suited to operation in 

most indoor environments. Facilities with automatic doors could be suitable for 
SigSent’s operation if the doors’ trigger mechanisms were sensitive enough to 
detect the unit and open autonomously. Additionally, remotely-operated doors 
could be either intentionally triggered by a security professional. Networked door 
could communicate with a SigSent unit, enabling the unit to request the doors to 
open autonomously. 

SigSent is not intended for use in environments lacking firm surfaces, such 
as swamps or soft snow. If a unit were to sink into a surface instead of walking 
atop it, it may not be able to remove itself. Additionally, SigSent is not intended for 
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use on slippery surfaces, such as ice, because a unit may lose traction and then 
find itself stuck in isolation. 

SigSent is not intended for use in weather producing poor visibility. Heavy 
rain, snow, or fog would limit an operator’s ability to see the environment 
surrounding a unit, and may prevent the unit from successfully completing its 
mission. 

For long-term survivability outdoors, SigSent’s final marketable design will 
need to be waterproof, protecting the electronics housed in its abdomen from 
ingress of water and its sensors from contact with moisture. 

3.1.3 Social 
For SigSent to be generally accepted for use in public spaces, its final 

marketable design will need to appear nonthreatening. This is especially critical in 
retail and hospitality environments where customers or clients should feel 
comfortable and willing to return. 

SigSent’s final marketable design should look intentionally dissimilar from 
insects in order to avoid the uncanny valley which would diminish likability of the 
product to both customers and the general public [9]. Additionally, those suffering 
from entomophobia would be especially distressed by a unit highly similar to an 
insect [10].  

Units should be reasonably quiet in order to prevent disturbing people 
nearby. 

3.1.4 Political / Ethical 
SigSent is not intended to be used as an offensive surveillance tool. 

Customers should be informed accordingly and reminded not to use the device for 
illegal recording activities. 

With SigSent being a product tailored to the defense and security industry, 
it could potentially be subject to export control restrictions. Care would need to be 
taken to ensure relevant governmental agencies approve of foreign sale. 

At least initially, SigSent’s customer base should be carefully examined to 
ensure any potential purchasers would not use the system for illegal or 
objectionable activities. Greater market acceptance may be hindered if any early 
adopter is shown using the system for a negative purpose. 

3.1.5 Health & Safety 
SigSent incorporates a high-capacity lithium-ion battery which could pose 

significant risk of harm to those nearby if handled incorrectly. Only appropriate 
chargers should be used with the system to ensure the battery is not overcharged. 

SigSent’s limb joints could pose pinching hazards, and the system should 
not be handled by children. 
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At full speed, SigSent will possess considerable momentum and should not 
be directed into an obstructed path. A collision could incur significant damage to 
the SigSent unit, in addition to causing property damage or bodily harm. 

To preclude any chance of optical damage, SigSent’s LIDAR unit should be 
no greater than a class 1 laser device [11]. 

3.1.6 Manufacturability 
SigSent is designed to leverage digital fabrication practices, enabling 

flexible lead times and manufacturing run scheduling. Fabrication techniques 
include 3D printing and laser cutting. These common techniques minimize 
overhead costs due to underutilized or specialized manufacturing equipment. Each 
unit is also fairly symmetrical, reducing the number of unique design elements, and 
enabling larger quantity production of the appendages. 

Tolerances are not incredibly exacting, enabling high yield production rates 
for fabricated components. 

Scaling SigSent larger would be relatively straightforward, with none of its 
structural components approaching typical limits of a readily-available workshop 
scale cutter or printer. SigSent could likely be scaled twice as large, but at greater 
material cost. 

SigSent may not be able to scale down significantly without major design 
changes due to the demands for abdomen space and due to the relatively poor 
tolerance of the digital fabrication tools on market. 

3.1.7 Sustainability 
SigSent operates on electricity, which can be provided by renewable energy 

sources. SigSent can be manufactured from sustainable plastics and polymers. Its 
battery should be carefully disposed to prevent environmental degradation. If 
possible, the batteries should be recycled. 

3.2 HARDWARE STANDARDS 
In the creation of SigSent, hardware standards used in the industry were 

followed to minimize possible error. These strict standards, set by large, successful 

companies, will force our team to work at the highest quality. 

3.2.1 Soldering Standards  
Soldering is a critical skill required to ensure that all electrical connections 

are electrically connected and have minimal impedance. Equally important for the 
system is that soldering creates a secure mechanical attachment of a component 
onto a PCB.  

To ensure that our soldering techniques and processes are trustworthy, we 
will be loosely following Standard J-STD-001F [12] created by the National 
Aeronautics and Space Administration (NASA). This document goes over various 
soldering materials, supplies, definitions, preheating procedures, reflow 
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procedures, what defines a good solder connection, and how to verify a proper 
soldering connection.  

Notable sections that will be strictly followed are those in section 4.18: 
Solder Connection which defines and discusses the characteristics of a proper 
solder connection defined by wetting, angle, slope, and surface finish. Also defined 
in the report are the characteristics of an improper solder connection in section: 
4.18.2: Solder Connection Defects which details how to identify bad solder 
connections. In Section 5.1: Wire and Cable Preparation the standard defines how 
to identify bad insulation and when a wire should be deemed unfit for use.  Section 
7.5.7 Flat Gull Wing Leads defines acceptable soldering dimension criteria on 
placement and solder fillet radii.  

 

Figure 2 NASA Soldering Standard: Lead Height (Public Domain NASA) 

3.2.2 PCB Design Standards 
Proper printed circuit board (PCB) design is critical for ensuring that the PCB 

introduces only minimal noise and impedance to the circuits that the PCB holds 
and that the circuits work as expected. Outlined in the standard IPC-221A by the 
Association Connecting Electronics Industries (IPC) [13] these standards cover 
design and fabrication practices related to PCB design. This standard also 



10 | P a g e  
 

highlights common problems and solutions that will help the SigSent team create 
a functional board. Key sections of the report that will be followed strictly are found 
in section 3.6.1 Board Layout Design, the entire chapter 6: Electrical Properties, 
and Section 7.2: Heat Dissipation Considerations. Following the standards set 
forth by IPC will better ensure that our circuit boards will work as expected and will 
be considered good craftsmanship.  

3.2.3 IEEE 802.11g 

802.11 Wi-Fi comprises multiple iterations of a standard that has evolved 

over time. The standard used in the implementation of SigSent is 802.11g. The 

802.11g standard for Wi-Fi is an older standard from 2003. It utilizes the 2.4GHz 

band. Its average throughput is 22 Mbit/s with a maximum of 54 Mbit/s for forward 

error correction codes. 802.11g is backward compatible with 802.11b. 802.11g 

was quickly adopted by the market due to its increased speeds at the time of its 

release. We are using this standard as it is integrated with the router we are using 

on-hand. Without budget constraints, a higher fidelity router with a better resolution 

or signal strength could be used [14].  

3.2.4 Inter-Integrated Circuit (I2C) Version 6 

I2C (I-two-C), also known as I2C (I-squared-C), is the communication 

standard we will have to abide by when connecting our various sensors to the 

microcomputer device. I2C stands for Inter-Integrated Circuit. It has multiple 

masters and slaves. It was invented in 1982 by Philips Semiconductor. I2C is used 

for connecting ICs to microcontrollers/computers with a close relative locality. 

There are no licensing fees to use I2C. The only fee that you need to pay is for 

access to slave addresses that NXP (the new name for Philips Semiconductor) 

assigns. I2C is a design where there is a clock (labeled as SCL) and data line 

(SDA) with 7 bits of addressing. The master nodes generate the clock and start 

the communication process. The slaves receive the clock and respond to the 

master’s requests. There can be any number of masters present. Masters and 

slaves can change places at will after a message transmission session has ended 

with a stop signal. The master kicks off the process by sending a start signal with 

the 7-bit address of the slave that it wants to work with. The master then sends a 

bit that specifies what mode it wants to enter with the slave (read/write). The slave 

responds to the master if it is on the bus and received the message. The signal 

that the slave sends is known as the ACK signal (acknowledgement). The bits are 

sent with the most significant bit first. The start of the bit stream is notated by a 

“high-to-low transition of SDA with SCL high” [15]. When the master is reading from 

the slave, it sends an ACK signal after every bit except for the last one, signaling 

that it is done receiving. Multiple messages can also be sent in I2C. A new start bit 

can be sent to signal a new message.  

There are three formats for I2C messages: single message (master to slave), 

single message (slave to master), and combined (master has two reads/writes for 

each one for the slave). These dynamic formats make I2C a welcome solution for 
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peripheral communication. We will primarily be operating under the slave-to-

master single message format, where the microcomputer will request data from 

the sensors. 

 

Figure 3 I2C example with one master, three slaves (CC license from 
https://upload.wikimedia.org/wikipedia/commons/3/3e/I2C.svg) 

3.2.5 Universal Serial Bus (USB) 

SigSent’s design incorporates multiple USB peripherals communicating with 

its microcomputer. In order to troubleshoot potential communication errors, 

understanding the family of USB specifications is necessary. 

The Universal Serial Bus (USB) set of specifications detail the protocol and 

physical hardware enabling interdevice communication [16]. Implementation of the 

specification is ubiquitous, and enables data and power transfer for many 

computer peripherals. The specifications define the physical form factor of 

connectors, parameters for reliable cabling, and the protocol for data transfer.  

USB relies on a star topology with a host servicing multiple endpoint devices. 

USB permits branching hubs relaying host information further down line, allowing 

up to 127 devices to connect to a single host. 

Over time, USB has received revisions increasing its bandwidth, with the 

most recent version, USB 3.2, boasting up to 20 Gb/s of data transfer. Additionally, 

the USB Implementers Forum, the organization governing the specification, has 

developed various different physical interfaces to connect USB devices. USB ports 

and their accompanying connectors come in multiple shapes and sizes as 

appropriate to the device’s form factor. 

3.3 SOFTWARE STANDARDS 
In the software field, standards keep code readable and maintainable. To aid 

in the development of our software components, and expose our team to 

professional-grade development standards, we have outlined the following criteria. 

3.3.1 Programming Languages 
Python will be used for SigSent’s software modules. Python allows for quick 

prototyping and fast iterations due to its simple syntax and extensive standard 
library included in its distribution. ROS has full Python support and NEAT has a 
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Python implementation that we have used in alternative projects before. With both 
the artificial intelligence and robotic system using the same back-end, they can 
work together with little alterations. 

The Graphical User Interface (GUI) for the base station unit will be built with 
Python and Pyside, a Python wrapper for Qt. Qt is a popular framework for GUI 
development, with an interface designer that features native components for the 
respective OS that it is run on, and a massive amount of documentation available. 
Qt is available for “student/academic purposes, ...[and] internal research projects 
without external distribution” under the GPL and LGPLv3 open source licenses 
[17]. When used commercially, Qt licenses can be fairly expensive. 

Our project’s website will be built using a framework more abstracted so 
that development time is not wasted building a comprehensive site that could 
instead be spent on bettering SigSent. Wordpress will be used to quickly produce 
a website where the project’s documents and progress can be publicly viewable. 
Python could be used to make a site using the Django framework, however this is 
not necessary, as the powerful templating engine from a dynamic backend 
language will not make much of a difference for a website as basic as ours. 

3.3.2 Naming Conventions 
The naming conventions that we will use will follow the PEP8 Python Style 

Guide written by Python’s creator (and Benevolent Dictator) Guido van Rossum. 
Classes will use PascalCasing. Functions and variables will be underscore 
separated like_this. PEP8’s style guide is used commonly in other companies and 
projects as it has set itself as a standard for software engineers. We will follow this 
standard to be consistent within our own project, and to better fit in with other 
software teams utilizing Python. We will use a linter, Pylint to enforce these design 
decisions. The code will emit warnings and fail to properly build when the code 
style guidelines are not followed. 

ROS has a style guide where they suggest best practices and auto 
formatting techniques to easily set the aesthetic of the C++ portion of the ROS 
code. ROS is fairly popular among professionals and enthusiasts alike. Many 
programmers host their code as open source projects on repository websites for 
other robotics community members to improve upon and utilize in their own works. 
SigSent’s code will fit this design criteria to have an equal contribution in the field 
while not disrupting the standard already set in the community. 

3.3.3 Build Environments 
SigSent’s software will be built on the Raspberry Pi microcomputer under the 

Ubuntu Mate 16.04 distribution. The Jessie Raspbian distribution is available as 
well, however Ubuntu Mate has more support at this time. ROS officially supports 
this setup. Catkin is the build system made for ROS similar to CMake, with added 
support for distributed sets of packages that ROS projects have. The Python 
scripts unrelated to ROS will not need to be built under a specific regime as they 
are dynamically interpreted by a Python interpreter at runtime. This lowers 



13 | P a g e  
 

performance, however the tradeoff for Python’s portability and speedy 
development is worth it. 

The code will be developed and tested on macOS and Windows platforms. 
Programming on an environment other than an ARM Linux distribution brings some 
inconsistencies, however using Python and ROS, there will be no issues, as each 
platform we develop for is officially supported by each module we use in 
development. Python itself has built-in cross platform support. Unit tests and 
frequent testing on our build environment will ensure that our software is always 
functional on our microcomputer. Debugging will be done regularly manually as 
well as automatically with our own build scripts we will use in our development 
pipeline. 

3.3.4 IEEE 802.11i-2004 

In order to ensure the privacy and integrity of communication between a 
SigSent unit and its corresponding base station, WPA2 security will be applied to 
the shared Wi-Fi network. IEEE 802.11i-2004 is the technical name for the 
standard implemented by the WPA2 protocol [18]. 802.11i relies on the Advanced 
Encryption Standard (AES). 

In 2004, WPA2 superseded the earlier Wired Equivalent Privacy (WEP) 
mechanism which had been proven insecure by Fluhrer, Mantin, and Shamir [19]. 

WPA2 dictates a handshake procedure between an access point and its 
supplicant which relies on exchanging messages encrypted with a common key, 
but not the key itself. Mutually successful decryption of shared messages confirms 
that both participants know the password and should be trusted. 

3.3.5 National Marine Electronics Association (NMEA) Message 

SigSent relies on the Global Positioning System to help locate itself globally. 

After determining its coordinates, SigSent logs its position according to a 

standardized structure developed by the National Marine Electronics Association 

(NMEA) [20]. All GPS Fix data messages are stored in adherence with the 

following format: 

1. $GPGGA, the sentence identifier for fix data 

2. Time Stamp, in Coordinated Universal Time 

3. Latitude 

4. Longitude 

5. Quality Indicator, a value between 1 and 5 

6. Number of Satellites in view and used in localization 

7. Horizontal Dilution of Precision 

8. Altitude of the antenna 

9. Altitude unit of measure 

10. Geoidal Separation 

11. Age of Correction 

12. Correction Station  
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4 RESEARCH AND BACKGROUND INFORMATION 

4.1 SIMILAR PROJECTS 
Below are two projects that follow our use-case and robot design. 

Knightscope has a product line, all advertised for autonomous sentry work. 

Although their robots do not have a similar build as ours, they seek to solve the 

same patrolling problem. NASA’s ATHLETE robot is detailed due to its similar 

hexapod platform. 

4.1.1 Knightscope 
Knightscope is an up and coming company manufacturing patrol robots that 

are large, functional, and aesthetically pleasing. Their products are being 
distributed in subscription based packages to clients that request demos at their 
location. Knightscope has two models that are releasing and being tested in 2018, 
being the K1 and K7 respectively [18]. 

The K1 model is a stationary product with a large array of sensors at its 
disposal. It is even able to detect weapons and radiation levels. The K1 has a 
weight of 150 lbs and dimensions of 62.4in x 28.8in x 11.2in. Until the product is 
released, this is the limited amount of information provided to the public as of now. 

 

Figure 4: Stationary Knightscope K1 set outside of an office building [18] 

The K3 is a mobile model that can move at up to 3mph. It is meant to be 
used indoors, “patrolling the interiors of businesses like sporting arenas, shopping 
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malls, and warehouses” [18]. Its dimensions are 51in x 24in x 33in and it has a 
weight of 340lbs. The K3 sports a 360-degree high definition video feed that can 
be viewed by anyone with the proper permissions. Two-way audio allows 
communication from security personnel and people nearby the actual robot. 
Messages can be recorded beforehand as well to be played from any fleet of K3 
robots. A thermal camera on the K3 allows thermal imaging on temperature critical 
devices at your location. The K3 can be used to alert the users if a predetermined 
temperature is reached to prevent damage or dangerous scenarios from playing 
out. 

 

Figure 5: Knightscope K3 in an indoor environment [18] 

 The K5 is used to patrol outdoor areas. Knightscope says that it should be 
paired with a human element “to keep areas such as parking lots, corporate 
campuses and hospitals safe autonomously”. The K5 appears to be a more 
durable, robust iteration of the K3. Its dimensions are 62.5in x 33.5in x 36in with a 
weight of 398 lbs. One of the selling points is its intimidating appearance. 
Knightscope compares it to having a marked police car sitting outside your location 
to deter criminals. The K5 can read up to 300 license plates per minute, checking 
for trespassers, blacklisted plates, and to track the usage of parking lots that it is 
supervising. The Knightscope K5 can also detect signals coming from routers and 
mobile devices to be aware of possible security penetrators in the nearby area 
[18]. 
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Figure 6: The Knightscope K5 patrolling a parking lot [18] 

 The final, and arguably most impressive Knightscope model, is the 
unreleased K7. This model has yet to enter a beta deployment, anticipated for 
2018. The K7 is in the shape of a futuristic looking car. Its speed has not been 
announced, however it will most definitely exceed the current maximum speeds of 
the other Knightscope models. The K7 is a multi-terrain robot that has dimensions 
of 57.5in x 63.9in x 116in, weighing 770 lbs [18]. 

 

Figure 7: The K7 model in an outdoor environment [18] 
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4.1.2 ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) 
NASA’s ATHLETE rover is a wheeled hexapod platform proposed for use 

during extraterrestrial missions [19]. ATHLETE differs from SigSent in scale and 
form but shares the same principle of integrating motorized wheels with walking 
legs to efficiently navigate mixed-terrain. ATHLETE is 4 meters in diameter, stands 
at 4 meters, and can carry a load of 450 kg on Earth. In contrast with SigSent’s 
combination of wheeled and wheel-less legs, all of ATHLETE’s legs have wheels. 

 

Figure 8: ATHLETE navigating rough terrain with wheels installed. Courtesy NASA/JPL-Caltech. 

 

ATHLETE is designed to operate at up to 10 km / hr on smooth terrain, 
which is 100 times faster than its predecessor rovers on Mars. This would allow 
ATHLETE to survey a much larger area in the same length of time. It also makes 
ATHLETE useful as a cargo transporter in addition to basic observational roles. 

 ATHLETE is also able to perform various missions through the attachment 
of modules to its highly-maneuverable legs, offering a more generally useful 
platform than specialized rovers of the past. 
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4.2 SOFTWARE RESEARCH 
In deciding the entire software platform for SigSent, research was done for 

components at every level of development, starting with the microcomputer 

board’s OS, and ending with the high-level artificial intelligence framework on 

which SigSent learns to act. 

4.2.1 Operating Systems 
The microcomputer and necessary software being run on SigSent adds 

constraints to the operating system that will be chosen. It must support each 

framework and library that is used and be able to be run on a minimal, low-cost 

microcomputer. 

4.2.1.1 Raspbian 
Raspbian is a Linux distribution based on Debian, another popular flavor of 

Linux. Raspbian has been endorsed and provided by the makers of the Raspberry 
Pi (Raspberry Pi Foundation). This OS is directly made for use on the Raspberry 
Pi, meaning it has been stripped down to only contain what the Pi needs and can 
use. It uses a lightweight desktop environment called PIXEL (Pi Improved 
Xwindows Environment Lightweight) for optimized performance on the 
microcomputer. Raspbian is also supported for use with ROS, although with the 
newer tutorials on recent ROS distributions, they recommend that Ubuntu MATE 
is used, due to its more extensive package list for use on the Pi. 

4.2.1.2 Ubuntu MATE 
Ubuntu MATE is a FOSS version of Ubuntu that is able to run on popular 

architectures such as IA-32, x86-64, PowerPC, and ARMv7 (which the Raspberry 
Pi features). Ubuntu MATE is a possible candidate for our main OS that SigSent 
will run due to its support for the ARM architecture. Ubuntu MATE is a fully featured 
OS and has the support of Canonical’s powerful Ubuntu system. Ubuntu MATE 
has better ROS support for newer distributions that Raspbian, and so will be our 
main OS for SigSent. 

4.2.2 OpenCV 
OpenCV is a widely used open source computer vision (hence the name) library. 
It has been ported over to many languages, including Python, the language that 
we will be using for our project. OpenCV was initially created by Intel to create a 
free framework that developers could read and use to build upon for advanced 
vision infrastructure. It was originally released publicly at the 2000 IEEE 
Conference on Computer Vision and Pattern Recognition. OpenCV has since been 
taken over by a non-profit organization at OpenCV.org. Now, OpenCV contains 
much more than a simple vision-based recognition system. They provide additional 
support for decision tree learning, Naïve Bayes classifiers, artificial neural 
networks, and deep neural networks (used extensively in frameworks such as 
TensorFlow, a deep learning framework made by Google).  

OpenCV is commonly used in facial recognition, gesture recognition, 
robotics, object identification, motion tracking, and augmented reality applications. 
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OpenCV is written in C++. To spread the framework to multiple platforms, 
wrappers have been made in several languages so that developers in almost any 
project can utilize it in some way. Popular languages using OpenCV are Python, 
Java, MATLAB, and C#. OpenCV is also supported on most operating systems, 
including: Windows, Linux, macOS, FreeBSD, NetBSD, OpenBSD, Android, iOS, 
Maemo, and even Blackberry 10.  

 To increase performance, OpenCV has added support for GPU 
acceleration in the image processing pipeline. CUDA support was added so that 
NVIDIA based cards can take advantage of GPU rendering speeds. OpenCL has 
been added as well, which is open source, but not as performant as CUDA in 
graphical applications. With embedded applications, using an NVIDIA board would 
enable higher performance under any vision-based project. 

 OpenCV will be used for SigSent to recognize anomalies during its sentry 
routes. There are a myriad of built-in classifiers for object detection already. By 
simply enabling a classifier to detect people or movement, we will simply alert the 
user monitoring the SigSent unit, and highlight the activity on the video feed being 
streamed to the base station computer. The Raspberry Pi that the SigSent is 
running off of will be doing the computer vision computation, however the base 
station can also be working in parallel. If a connection to the unit is lost, the robot 
will still be able to properly process the input images. The base station can be used 
in the case of too much load being placed on the robot. The Raspberry Pi is 
powerful, and will only be doing the CV and NEAT computations, so it should not 
be too much underload, however to increase the robustness of our implementation, 
the extra hardware will be utilized if necessary. 

4.2.3 SLAM 
Simultaneous localization and mapping (SLAM) is a process which 

combines mapping an unknown area with localization. First created by R.C. Smith 
and P. Cheeseman in 1986, SLAM combines the creation of topological maps 
created from sensor data and Advanced Monte Carlo Localization (AMCL) to 
create an accurate relative map that is constantly expanded and refined as a robot 
moves around its environment. As the robot moves around sensor data is collected 
and creates a relative “frame” of a map, this frame is then matched with the robots 
last known location through AMCL to determine the robots new position within the 
map and the two maps stitched together to create a seamless map that the robot 
can later use for obstacle avoidance and object-based navigation goals.  

4.2.4 State Machine 
A finite state machine (FSM) is defined as “a mathematical model of 

computation. It is an abstract machine that can be in exactly one of a finite number 
of states at any given time. The FSM can change from one state to another in 
response to some external inputs; the change from one state to another is called 
a transition. An FSM is defined by a list of its states, its initial state, and the 
conditions for each transition.” [20]  FSM’s are often used in robotics as a way to 
place the robot into a state of operation based on some number of inputs, A state 
might be something as simple as “sleep” or as complex as “search for ‘x’”.    
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4.2.5 ROS 
The Robot Operating System (ROS) features new distributions on a 

constant release cycle of “Long Term Support” (LTS) on even numbered years and 
then short-term releases with a shorter lifespan on odd numbered years. LTS 
releases are recommended for mission critical applications. We will be using the 
ROS Kinetic Kame distribution released on May 23rd, 2016 with an End-of-Life 
(EOL) date of April, 2021. 

“…[ROS] is a flexible framework for writing robot software. It is a collection 
of tools, libraries, and conventions that aim to simplify the task of creating complex 
and robust robot behavior across a wide variety of robotic platforms.” [21]. ROS is 
designed around four key concepts, Plumbing, Tools, Capabilities, and 
Ecosystem: [22] 

 

Figure 9: ROS Key Concepts 

 The core usefulness of ROS is that it provides a standardized messaging 
and monitoring system where programs can easily and generically interact with 
other programs allowing for easy communication and modularization between high 
and low-level software’s with each other. This standardized messaging also allows 
for software’s to be genericized from individual hardware’s, where only the low 
level driver wraps a sensors output or a actors input in a ROS compatible message. 
This standardized messaging and monitoring allows for ROS to be very powerful 
by allowing programs to become very modular, and also allows for distributed 
computing natively by design.  

  ROS has a hierarchy where there is a ROS MASTER which is the main 
program that executes and manages all interactions and keeps track of everything 
happening within ROS. Individual programs are called nodes, nodes can be a 
publisher or/and a subscriber which sends or receives messages to/from a topic. 
A topic is a bus of messages and work as an abstracted message handler 
controlled by ROS MASTER. The general process is that you have a PUBLISHER 
which sends a MESSAGE to a TOPIC, a SUBSCRIBER is listening to the TOPIC 
and then receives the MESSAGE.  



21 | P a g e  
 

 

Figure 10: Example of a publisher and subscriber relationship in ROS [23] 

 

Figure 11: Visualization of Multiple Nodes and topics interacting through messages in ROS [24] 

4.2.5.1 Gmapping 
Gmapping is a Package that contains the node that runs SLAM (4.2.3). 

Gmapping uses lidar (4.3.3) data along with camera, IMU (4.3.7) and GPS (4.3.8) 
data to construct a map of its surroundings on the fly. Gmapping will easily allow 
the robot to localize and map the surrounding areas so that SigSent can quickly 
understand its local area and avoid obstacles and path itself along GPS waypoints.  
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Figure 12: Representation of Gmapping and Lidar Data (highlighted in red) [25] 

4.2.5.2 SMACH 
SMACH or State MACHine, is “…a task-level architecture for rapidly 

creating complex robot behavior. At its core, SMACH is a ROS-independent 
Python library to build hierarchical state machines. SMACH is a new library that 
takes advantage of very old concepts in order to quickly create robust robot 
behavior with maintainable and modular code.” [26]  

SMACH allows for a streamlined and integrated way to create a state 
machine within ROS that can efficiently direct SigSent to its short and long term 
goals as well as switch states quickly on the detection of an intruder or human 
controlled TeleOp-ing.  
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Figure 13: A Visualization of a SMACH State Machine [27] 

4.2.6 Intelligent Systems 
Before implementing the artificial intelligence portion of SigSent, extensive 

research was done on the various learning methods available to us. After reviewing 
their advantages and disadvantages, we settled on using reinforcement learning. 
Reinforcement learning is used in a variety of algorithms. We researched some of 
the most popular algorithms and decided to use NEAT (NeuroEvolution of 
Augmenting Topologies) due to its impressive track record and presence at the 
University of Central Florida, as well as prior knowledge of the algorithm’s inner 
workings and extensive work in genetic algorithms by the team’s artificial 
intelligence programmer, Richie Wales. 

4.2.6.1 Learning Methods 
In AI, there are diverse ways a system can artificially “learn” to perform a 

task. Research was done on the three main methods so that the most optimal one 

would be further explored and then used for SigSent’s intelligence platform. 
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4.2.6.1.1 Supervised Learning 
When the desired output is known to the programmer, supervised learning 

is used to push the intelligent system to provide the necessary function that results 
in this output. The output necessary for a given input is sometimes called the 
supervisory signal. Supervised learning is useful when there is a clear behavior 
that should be propagate.  

 The learning takes place on a training set of data. This set is hand picked 
by the programmer. An additional data set is necessary to test the derived function 
after learning. This test set determines how effective the training period was. This 
test set must contain unique elements in it that were not included in the training 
period to provide sufficient evidence of a generally learned behavior. This tests 
how general the learned function has become. The test set needs to be broad 
enough to represent the data fairly as it occurs naturally.  

 The inputs into the function should be minimized to lower the complexity on 
the learning process. Having too many inputs will require optimizations of all of 
those attributes. A common phenomenon is the “curse of dimensionality” [28]. This 
issue refers to having too many dimensions of data to optimize for, where the 
search space grows much too large. With every added dimension, the number of 
enumerations possible for each parameter increases by a multiplicative of each 
additional input. For machine learning, this means you need to have an even 
greater number of training data points such that you fairly represent the desired 
output for a large region of the search space. If you do not have enough data to 
represent each parameter’s changes, the function will not learn how to process 
each variation effectively. The Hughes Phenomenon is a relative of the curse of 
dimensionality specifically targeted towards pattern recognition described by 
Gordon F. Hughes in his paper, “On the Mean Accuracy of Statistical Pattern 
Recognizers” [29]. In his conclusions, he states that there is a maximum 
acceptable complexity associated with a problem domain. In his pattern 
recognition experiment, he found that after some threshold, the increase in input 
dimensionality did not lead to a significant improvement in creating his classifier. 
Hughes presents ideas on how to accurately predict the necessary input size. He 
suggests using statistical techniques, like “Shannons’ information measure” or 
“Kullbacks’ divergence measure” to prune the number of possible input sizes. He 
finishes his paper stating that further work must be done on these ideas to develop 
a better idea on how an optimal search space can be decided. 

 The learning algorithm that is chosen for the task should be problem 
specific. If the data can be easily represented in a specific data structure or 
programmatic manner, the algorithm should be chosen to fit that domain. If the 
hardware that the learning algorithm is taking place on is optimized for a specific 
data representation, that should also be considered. Embedded machines with 
limited memory would have to utilize a method that takes this into account. 
Perhaps the execution time is more important than the space complexity; This 
would lead the programmer to seek an algorithm optimizing for speed by sacrificing 
memory usage. A humorous theorem in mathematics known as the “No free lunch 
theorem” [30] covers this problem. No algorithm will be able to solve every function. 
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There is always a tradeoff associated with it. Because machine learning and 
artificial intelligence has become a more matured field over time, there is no 
shortage in possibilities though. 

 Supervised learning, while effective, is all about curve fitting. Sometimes 
however, there is no “desired” behavior that we hope to elicit. In the case of 
SigSent, we have a type of behavior that we hope to see propagate, however there 
is no exact functionality that we want to impose on the robot’s mechanics. If we 
knew exactly how its movement should be performed for very specific terrain 
environments, the training set could encompass what moving mechanism and 
mobility methods are used for very specific conditions. In the case of our arachnid 
inspired device, the movement type and behavior is complex. We hope to find 
behaviors come out that we did not expect or promote. The learning algorithm 
should find some optimal, or at the very least, well-performing functionality that 
solves the problem of mixed mobility that we present to it. Instead, we choose a 
learning method that strives to achieve the programmed goal by whatever means 
available to the software/hardware. In this case, an unsupervised learning method 
is used. 

4.2.6.1.2 Unsupervised Learning 
In unsupervised learning, the machine learning algorithm attempts to find a 

function that classifies the given data with no direct comparison between objective, 
desired outputs. The algorithm has no guidance during the training, however it 
must find a way to group the data presented to it. The data is known as being 
“unlabeled”. They are strictly discrete values that have no classification or 
association given to the algorithm. Two popular domains that this style of algorithm 
is used for hope to solve classification and association problems. Clustering 
involves grouping data through some sort of classifier where data points share 
similar attributes. Associations are found through relationships between input 
parameters. 
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Figure 14: Supervised and unsupervised classification performed for Dr. Sommer’s research on using 
machine learning for phenotype recognition 

In the figure above, Dr. Sommer shows how supervised and unsupervised 
learning methods took place on labeled and unlabeled data respectively. In 
subfigures A-C, the colored data points show that they are labeled. In subfigure B, 
the data was classified to some decent sense of accuracy as most of the green 
points are clearly sectioned away from the red. This classifier was done with 
somewhat linearly separable data, as a single divider was able to separate most 
of the data. In subfigure C, using a Gaussian kernel, the data was able to be 
classified more accurately in a circular region. Additional extensions like this to the 
classic classifier allow for more accurate separations of classified regions to more 
accurately model the desired function. Subfigures D-F show data being classified 
under an unsupervised algorithm as they are unlabeled (shown as black data 
points). Subfigure E shows the data being grouped by analyzing the properties of 
the data. This is problem specific and can be as simple or complex as the use case 
it is performed on. In figure F, the grouped data is then classified by the 
unsupervised learning algorithm very easily, as the grouping that was performed 
before has easily separated the data into two distinct groups [31]. 

4.2.6.1.3 Reinforcement Learning 
Like its name suggests, reinforcement learning uses the idea of a reward 

system to reinforce behaviors that are performing as desired. The reward is 
decided by the programmer, but should follow the problem statement closely. In 
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the case of SigSent, this reward could be based on the distance the robot travels, 
the speed of its mobility, and/or the smoothness of the journey. This reward will be 
tracked throughout the learning trial, taking sensor data as inputs to decide how 
well the device’s mobility mechanism performed. Reinforcement learning is used 
in a broad range of fields due to its easy extensibility. All the programmer has to 
modify is its reward mechanism and how its data is represented in the learning 
algorithm. Since the desired behavior is not exactly known, but the overall results 
that the programmer seeks is known, simply rewarding functionality that meets 
those requirements can cause any sort of behavior to propagate that meets them. 
This allows the computer to discover methods that were either not thought 
possible, or not initially envisioned. Giving the device that freedom can lead to 
interesting results. Markov Decision Processes (MDPs) are popular in machine 
learning practices.  

Since reinforcement learning hopes to optimize some functionality without 
a direct input/output to compare to, there is a direct trade-off between the 
exploration of the search space and the exploitation of the current knowledge that 
the algorithm has discovered. This dichotomy has been researched heavily in 
learning algorithms to help optimize their performances. The multi-armed bandit 
problem is a prime example of this issue. In casinos, slot machines can be referred 
to as one-armed bandits, given it has a single arm and seeks to steal all of your 
money. The multi-armed bandit problem states, if you are given a slot machine 
with multiple arms that award different payouts and you have a limited amount of 
lever pulls available to you, how do you maximize your gains? You must explore 
the search space by trying out the levers presented to you, figuring out their 
probabilities as best as you can. The problem is, this exploratory period means 
that you are spending lever pulls on sub-optimal machines that will not net you the 
highest gain, but you must do this so you can discover which machine has the best 
reward. After some time, it is in your best interest to commit to the lever that you 
believe has the highest payoff. There are many modified versions of this problem 
and suggested solutions to it as well. The most optimal solution has been proposed 
in the paper, “Asymptotically efficient adaptive allocation rules” [32].  

Depending on the problem and the environment that the agent is operating 
in, the learning agent will be given either complete or partial visibility of its 
surroundings. In the case of an agent implemented completely in software, its 
vision is boundless. There are no physical restrictions on what information is 
provided to it. The only reason to limit its vision would be to lower computation time 
and dimensionality of the domain. In the case of SigSent, and other physical 
implementations, the amount of information given to the device is limited by sensor 
specifications, data latency, and what is actually visible or present in the physical 
environment. The actions of the agent are measured in some sort of time tick 
decided by the programmer and the algorithm. Realistically, there would be some 
sort of loop executed in some discrete time step where the environment’s state is 
passed to the agent, the agent takes some action based on this information, and 
the algorithm/programmer interprets its action to provide the necessary reward to 
promote or discourage the behavior it saw. Depending on the implementation of 
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the algorithm, the agent can attempt to maximize or minimize this reward. If the 
agent continuously performs some action that tends to be a boon to its reward, 
then it will continue to exhibit similar behaviors. It may do something radically 
different to explore more of the search space, but if that change was not helpful, 
the agent can easily fall back on the previous, performant action. This is where the 
exploration versus exploitation problem comes into effect. This search can be 
dynamic as well to offer better search optimizations. In the beginning of the 
learning process, exploration is very important. In a higher order function, there 
can be many hills and valleys in its search space to throw off the algorithm. In a 
hill climbing exercise for optimization, the algorithm should not settle for one simple 
curve with a positive gradient. The top of that hill could be suboptimal, local 
extrema. The exploitative part of the algorithm will continue to climb this hill, 
however in the later stages of the algorithm, exploration should still be possible to 
search for global maxima present in the space. 

 

Figure 15: Representation of Reinforcement Learning (Under CC license at [33]) 

 

4.2.6.2 Reinforcement Learning Implementations 
Of the three learning methodologies, reinforcement learning techniques is 

the natural choice for SigSent. True intelligence stems from the robot making the 
best decisions on its own. If we were to give it training data for very specific 
environments and expect certain mobility responses, we would be better off 
programming detailed sensor thresholds to trigger the mobility changes. The 
learning method would be cumbersome for little additional gains. Furthermore, the 
large input size from SigSent’s sensor array could make the learning process very 
complex. We hope to allow SigSent to adequately learn optimal movement 
techniques by discovering it on its own, undefined by our team. Having a unique 
robot with several limbs, and limbs of different types, defining the proper movement 
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method would be difficult anyway. When dealing with something radically different, 
letting the computer explore the different options available to it will provide a much 
clearer picture on what works and what does not, unbeknownst to us [33]. 

4.2.6.2.1 Q-Learning 
Q-Learning is a policy-based learning algorithm that decides what action 

should be taken to result in the best utility value. An “action-value” function is 
learned by the learning method such that for any inputs, the highest scoring action 
is chosen to be enacted. A major disadvantage to using Q-Learning is that all of 
the states and actions must be known beforehand [34]. Since our robot will be used 
in many different environments, there is no way we can accurately model every 
single possible location as a designed state. Before the learning takes place, an 
exhaustive search of all of the various possible states would need to be found 
experimentally, which is just not possible for SigSent. 

4.2.6.2.2 Genetic Algorithms 
 Genetic Algorithms (GA) take techniques from Darwin’s method of natural 
selection to effectively search through a space for optimal solutions. A population 
of individuals are randomly created initially, where each individual is essentially a 
“solution” to the problem. These individuals are tested in some environment, 
specific to the problem, and have a fitness score assigned to them. The fitness is 
the same reward mechanic in any reinforcement learning mechanism. The most fit 
individuals are then used to generate a new population through crossover and 
mutation operators. Crossover takes parts of two solutions and combines them 
into one. Mutation has a rarer occurrence, selecting pieces of a solution and 
randomly modifying them with no regard for the consequence of the change. This 
mutation is used to increase exploration of the search space. The specific 
operators, and how the individuals are selected for reproduction, are up to the 
implementation of the genetic algorithm. GAs are a way to speed up an exhaustive 
search by adding a sort of “implicit parallelism” by having individuals tackle the 
search space at many different angles (dependent on the size of the population), 
honing in on regions that have high fitness values. 

 Genetic algorithms can fall flat when the search space, or the relationship 
between the inputs and outputs, are not suited for the GA. If the search space 
contains many hills, the GA will have a difficult time trying to find the most optimal 
value as it will get stuck in local optima. The genetic operators (crossover/mutation) 
assume that solutions that are adjacent in the search space have similar fitness 
values such that small movements around those solutions will provide an 
increasing fitness. If there is no such relationship, the GA will be about just as 
effective as a random, exhaustive search throughout the space. Also, as is the 
case with our robot, there is a high order of dimensionality, which causes the 
search space to be absurdly large. Representing the solution in the GA can also 
be a major concern. Binary strings are the easiest items to manipulate in a GA, 
however with all of the sensors and motors utilized by SigSent, these would not be 
easily represented.  
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4.2.6.2.3 Neuroevolution 
Neuroevolution uses a GA to evolve a neural network to solve a problem. 

Neural networks act as black boxes. You pass some inputs to them, they provide 
some hidden computation in the background, and then you retrieve the outputs 
and use them for your problem. Neural networks are able to find meaning from 
complex data that humans can not intuitively find. Neuroevolution provides this 
technique while also evolving the neural network with a GA such that the 
programmer’s involvement in the learning process is very minimal. Normally, you 
must write some sort of methodology to change the weights on the neural network 
(where the topology is constant), or somehow change the structure of the network 
over time. Using a neuroevolution algorithm takes care of this work for you, altering 
the network based on its performance (as it is assigned a fitness). 

4.2.6.3 NEAT 
NEAT (NeuroEvolution of Augmenting Topologies) is a direct 

implementation of neuroevolution by Dr. Kenneth Stanley [35]. He found that 
starting with a minimally structured network and having a GA add complexity over 
time resulted in a simple network that had an optimal performance value. NEAT 
uses speciation to continue with exploration, while also not sacrificing exploitation 
by keeping networks grouped by similar topologies so that if one network structure 
was performing well, others were not discounted for further investigation. There 
are several new versions of NEAT that have been released as extensions for 
different use cases as well, so the community is very active. Dr. Stanley’s lab, the 
Evolutionary Complexity (EPlex) lab, is housed at the University of Central Florida, 
giving us access to possible mentoring opportunities for the project. 

 SigSent will use NEAT in a training phase in both simulation and physical 
environments. The simulation period will be used to refine the parameters for the 
algorithm as it relates to NEAT’s GA values and the initial neural network’s starting 
structure. The input and output representations need to also be modified into some 
optimal format, which is only known through empirical study. The simulations will 
be done in Gazebo, a test environment created to interface easily with ROS. If the 
tests in Gazebo run well, we will transfer that knowledge over into the training 
phase when working with the actual robot in real location settings. The studies 
done in the simulation may not have a direct application in the physical tests, 
however it gives us a good starting point and also allows us to code up the 
algorithm’s implementation while parts are arriving, and the robot is still being built.  

 Our inputs into NEAT will be the rotational acceleration of the robot from its 
IMU as well as a terrain classification of the surrounding area. The terrain 
classification will be decided based on inputs from the camera and LIDAR sensor. 
By passing the camera’s input through a location classifier using computer vision, 
we can predict a probability that the surrounding scenery is smooth/rough. The 
LIDAR is used to map objects around the robot, which will corroborate the ideas 
presented from the camera. Once the terrain is properly analyzed, this 
classification is passed to an input node in NEAT. The network does the proper 
calculations based on the nodes and weights connecting them, producing a binary 
output that will decide whether the robot should alter its mobility type. Rather than 
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having outputs for the specific movements of each appendage on the robot, the 
network will simply decide whether the robot enters its paddle or wheel-based 
mode. This binary output should make the learning process simple. 

4.2.7 Gazebo Simulation 
 To test the robot’s mobility mechanisms in a realistic environment, and 
begin debugging the ROS code before the robot is built, a proper test simulation 
is needed. Gazebo is a popular robot simulation tool that is free to use and boasts 
a well-designed environment to “rapidly test algorithms, design robots, perform 
regression testing, and train AI system using realistic scenarios” [36].  

A model of SigSent, designed in the SDF file format, can be imported into 
the simulation, describing every detail of the vehicle needed for simulation. ROS 
is easily integrated with Gazebo to allow for ROS message passing and processing 
within the simulation. The test environment that the robot simulation will run on will 
feature different types of terrain to validate the functionality of the mobility switching 
of the intelligent system. Through the various tests that the simulation is put under, 
the algorithms will be tuned and perfected to meet the criteria of the desired 
product. 

 

Figure 16: An Example of a Gazebo Simulation [37] 

4.3 HARDWARE RESEARCH 
In addition to the hardware constraints and standards outlined in section 0, 

every piece of hardware involved in the development of SigSent had particular part 

considerations necessitating research to find the best choice in each category. 

Some parts had scores created to evaluate their objective value to our project. 

Other parts have clearly defined specifications that were used to decide which part 

was the most optimal for SigSent. 
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4.3.1 Microcomputer 
A microcomputer in the generic sense was chosen over a microcontroller 

due to the complexity of the robot. SigSent will have to compute computer vision, 
Lidar data, SLAM, state machine, control system, wireless communications, and 
diagnostic information constantly in order to properly complete its goal. Completing 
these goals on a microcontroller, while feasible, was determined to not be a time 
efficient solution since an operating system capable of handling multitasking would 
complete much of the juggling required to complete all those tasks simultaneously, 
in the same stroke there are many programs which could be used on an operating 
system (OS), most likely a linux derivative, that will also streamline the 
development of the project within our time scope. Libraries and programs such as 
OpenCV, ROS, i2c-tools, bash, ssh, python, et.al. allow for the SigSent team to 
quickly develop the novel features of our robot while not reinventing the wheel, 
spending precious time developing and testing already heavily standardized 
features and libraries. 

4.3.1.1 Microcomputer under consideration 
The microcomputers defined below were serious considerations due to their 

popularity and computing power. Their strengths and weaknesses are displayed 

in the scoring table: Table 2 Microcomputer Comparison. 

4.3.1.1.1 Raspberry Pi 3 
The Raspberry Pi 3+ is under consideration for this project due to its low 

price, impressive computing power, number of USB ports, and its significant 
community support and documentation. 

4.3.1.1.2 Raspberry Pi Zero W 
The Raspberry Pi Zero W is under consideration for this project due to its 

extremely low price, low power consumption, and the significant community 
support and documentation  

4.3.1.1.3 Beaglebone Black 
The Beaglebone Black is under consideration for this project due to its good 

community support, and impressive amount of GPIO pins, and its efficient use of 
power.  

4.3.1.1.4 Gumstix DuoVero™ Zephyr COM 
The GimStix DueVero Zephyr COM is under consideration for its 

professional more industrial design approach outside of the hobby/maker market 
like the above microcomputers. Where the gumstix lacks in other specifications 
and price point, it makes up for in customer service and reliability through tested 
development.   

4.3.1.1.5 Nvidia Jerson MK1 
The Nvidia Jetson MK1 is under consideration for this project on the 

possibility receiving sponsorship for the microcomputer. The Jetson MK1 has one 
of the most powerful GPU’s in the embedded computer market which will allows 
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the robot to crunch through the heavy math calculations easily where other 
microcomputers would struggle. 

4.3.1.2 Specifications 
To compare each microcomputer objectively, important specifications were 

decided upon which the highest scoring in total would be decided to be used. 

4.3.1.2.1 Price 
Price is a self-explanatory constraint, as the price of the microcomputer 

increases this relates linearly with the teams will to implement it due to our limited 
sponsored budget. 

4.3.1.2.2 Frequency 
The faster the clock cycle is on a RISC processor (all microcomputers under 

consideration are ARM based) we can safely assume that the more instructions 
will be executed per second. Being able to crunch those numbers more time 
efficiently means that our robot will not be bottlenecked by the CPU and allow for 
near continuous operation of the robot. 

4.3.1.2.3 Cores 
The more cores there are in the CPU the more threads our robot can run, 

once again allowing for a more continuous, less bottlenecked operation of the 
robot.  

4.3.1.2.4 RAM 
RAM is very important for our robot as processing images through OpenCV 

can be very memory intensive as multiple images need to be loaded, processed, 
and acted upon as soon as possible for our robot to operate functionally, the more 
RAM that is available to us, the lower the risk of SigSent being RAM bottlenecked 
is. 

4.3.1.2.5 Average Power Consumption 
Power Consumption is of critical importance to the vehicle overall, the less 

power the microcomputer consumes or wastes the longer the vehicle can move, 
patrol, and report. 

4.3.1.2.6 USB, GPIO, I2C, WiFi 
USB Ports, GPIO, I2C, and WIFI functionality are crucially important to the 

vehicle since our sensors require USB and I2C, our simple outputs and simple 
transducers rely on GPIO, and our communication with SigSent’s base station 
relies on WiFi (pending change). A valid board would require all of these features.  
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4.3.1.3 Score 
A score was calculated based on a formula that maximizes the value for 

specifications that are positively valuable and minimizes over specifications that 

undesirable. 

4.3.1.3.1 Formula 
In order to quantifiably determine the relevance of one microcontroller over 

another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒 =
𝑆𝑝𝑒𝑒𝑑 ∗ 𝐶𝑜𝑟𝑒𝑠 ∗ 𝑅𝐴𝑀 ∗ 𝑈𝑆𝐵 𝑃𝑜𝑟𝑡𝑠 ∗ 𝐺𝑃𝐼𝑂 𝑃𝑖𝑛𝑠

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

Equation 1: Formula for Microcomputer Comparison Score 

4.3.1.3.2 Specification Comparison and Score Output 
Table 2 Microcomputer Comparison 

Name 

price 
(USD
) Processor 

Spee
d 
(GHz) 

Core
s 

RA
M 
(kB) 

Avg 
PW
R 
(mW
) 

#US
B 

#GPI
O 

I2
C 

WiF
I 

Scor
e 

rPi 3+ 35 BCM2837 1.2 4 
102
4 5120 4 40 T T 4.39 

rPi 
Zero 
W 10 BCM2835 1 1 512 900 0.5 28 T T 0.8 

BBB 68.75 
AM3358 
Sitara 1 1 512 2500 1 92 T T 0.27 

Zephy
r 200 

OMAP443
0 1 2 

102
4 3960 1.5 70 T T 0.27 

Jetso
n 129 

Quad 
ARM® 
A57/2 MB 
L2 1.9 4 

409
6 4700 1 20 T T 1.03 

 

4.3.1.3.3 Selection Rationale 
Going from the score, and corroborated with group consensus, we have 

decided upon choosing the Raspberry Pi 3 Model B. We have chosen this 
microcomputer due to its combination of low cost, high CPU performance, low 
power consumption, large amount of USB ports, and reputable amount of GPIO 
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pins allowing for easy expandability should the project require unforeseen changes 
in the future. The Raspberry Pi 3 also has native support for USB, I2C, GPIO, and 
Wifi, as well as some other nice options such as an ethernet port, speaker output, 
and HDMI output and USB output. And above almost all else, the Raspberry Pi 
organization has a significant amount of documentation, support, and community 
driven forums that will aid in quickly being able to understand, develop, and 
troubleshoot any problems or questions that our team has about using this specific 
microcomputer.   

4.3.2 Microcontroller 
A microcontroller is used to complement the microcomputer on the robot. 

The two systems are on two separate discrete boards to reduce load on the system 
and provide a more reliable system that will be controlling the actual robot’s 
movement. If the artificial intelligence and control systems logic were placed on a 
single board, the AI latency could cause the movement scheme to suffer, and vice 
versa. A microcontroller being used to interface with the physical robot needs to 
be cheap, low-power, have enough input and output ports to interface with the 
necessary sensors, and have enough computational power to reduce delays in 
processing the movement of the robot. These three parameters will be discussed 
for the popular architectures and implementations below. 

4.3.2.1 Atmel megaAVR 
Atmel chips are popular for hobbyist projects and for low-power needs. 

Arduino boards which are ubiquitous in the embedded world today use the Atmel 
Atmega IC. This chip can be taken off of the development board and placed in a 
PCB very easily. For prototyping purposes, the chip can remain on the Arduino (or 
third party) board until the PCB has been created and the functionality has been 
verified to be correct. Below are discussions on the major Atmel chips used today. 

4.3.2.1.1 ATmega328 
This Atmel chip is 8-bit with 32KB of ISP flash memory that can “read-while-

write”. It also has 1KB EEPROM, 2KB SRAM, 23 General Purpose Input/Output 
(GPIO) lines, 32 General Purpose Registers (GPRs), three timer/counters, 
internal/external interrupts, USART serial programming, SPI serial port, 6-channel 
10-bit ADC, watchdog timer, and power saving modes. The ATmega328 has an 
operating voltage of 1.8-5.5V. From this operating voltage range, a range of clock 
speeds can be achieved as seen in  

Table 3: Operating speeds at voltage ranges 

Clock Speed Operating Voltage 

0-4MHz 1.8-5.5V 

0-10MHz 2.7-5.5V 

0-20MHz 4.5-5.5V 

4.3.2.1.2 ATmega1280 
The Atmega1280 is a higher performance Atmel chip that is still low-power. 

It has 128KB ISP flash memory, 8KB SRAM, 4KB EEPROM, 86 GPIO lines, 32 



36 | P a g e  
 

GPRs, real time counter, six timer/counters, PWM, 4 USARTs, SPI, 16-channel 
10-bit ADC, and a JTAG interface. The ATmega1280 has a performance of 16 
MIPS at 16 MHz with an operating voltage of 2.7-5.5V. 

Table 4: Operating speeds at voltage ranges 

Clock Speed Operating Voltage 

0-8MHz 2.7-5.5V 

0-16MHz 4.5-5.5V 

4.3.2.1.3 ATmega2560 
The ATmega2560 chip employs a larger 256KB ISP flash memory, 8KB 

SRAM, 4KB EEPROM, 86 GPIO lines, 32 GPRs, six timer/counters, PWM, 4 
USARTs, SPI, 16-channel 10-bit ADC, and a JTAG interface. It has similar 
specifications to the ATmega1280, however has double the flash memory. Its 
operating voltage is a narrower range of 4.5-5.5V with a clock speed ranging from 
0-16MHz. 

4.3.2.2 MSP430 
The MSP430 is produced by Texas Instruments (TI). It is a group of 16-bit 

CPUs that are built for low power and are sold at cheap prices. As noted by the 
different families of chip implementations below, TI follows a naming pattern for 
each group of MSP430 chips. MSP430 signifies that it belongs to that specific 
architecture. The next letter indicates the memory type or its specific application. 
Flash memory chips use a “F” to identify themselves. A “G” is used to denote items 
used for medical instrumentation. One chip that does not follow this naming 
convention though is the MSP430FG2xx family. Below are some popular 
implementations of the MSP430 architecture produced by TI that we have 
researched for use as the primary microcontroller in SigSent. 

4.3.2.2.1 MSP430x1xx 
This series of MSP430 chips is very basic, not including an embedded LCD 

controller. They can use flash (1-60KB) or ROM (1-16KB) based memory, and 128 
B -10KB of RAM. They have a performance score of 8 MIPS. They have an 
operating voltage of 1.8-3.6V. The x1xx series includes 14/22/48 GPIO lines, 
10/12-bit SAR (Successive Approximation) ADC. They have several integrated 
peripherals. To name a few key items (and similar ones to the Atmel chips), two 
16-bit timers, a watchdog timer, brown-out reset, USART, 16x16 multiplier, and a 
temperature sensor. These chips have three different operating modes that have 
low levels of current draw. In order from least to greatest current draw: RAM 
retention mode (0.1 μA), real-time clock mode (0.7 μA), and MIPS active (200 μA). 
The x1xx chips have a wake-up time from standby under 6 μs. 

4.3.2.2.2 MSP430F2xx 
The F2xx series adds more performance at a lower power usage than the 

x1xx series. It includes a very-low power oscillator (called the VLO). The F2xx 
chips feature 1-120KB of flash, 128B-8KB of RAM, 10/11/16/24/32/48 GPIO lines, 
10/12-bit SAR ADC, and 16/24-bit Sigma Delta ADC. In addition to the peripherals 
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from the x1xx series of chips, the F2xx family has I2C support and operational 
amplifiers. Its power modes from least to greatest current draw are: RAM retention 
(0.1 μA), standby using the VLO (0.3 μA), real-time clock (0.7 μA), MIPS active 
(220 μA). These chips have a wake-up from standby time under 1 μs. 

4.3.2.2.3 MSP430G2xx 
The G2xx series are considered “Ultra-Low Power”. They feature the same 

16 MIPS performance, VLO, 1.8-3.6V, and I2C in a smaller package, with less 
GPIO pins. The power modes are similar to the F2xx series, except the VLO mode 
draws 0.4 μA instead of 0.3 μA. The device specifications are as follows: 0.5-56 
KB flash, 128 B – 4 KB RAM, 10/16/24/32 GPIO lines, and 10-bit SAR ADC. The 
differing peripherals are: three 16-bit timers (one higher than the other series) and 
capacitive touch I/O. 

4.3.2.2.4 MSP430x3xx 
The x3xx series includes an LCD controller, increasing its portability. 

EEPROM memory was not included in this series, instead using one-time 
programmable EPROM. They operate from 2.5-5.5 V. The x3xx specifications 
include: 2 – 32 KB ROM, 512 B – 1 KB RAM, 14/40 GPIO lines, 14-bit SAR ADC, 
and an integrated LCD. Their power modes are: RAM retention (0.1 μA), real-time 
clock (0.9 μA), and MIPS active (160 μA), and a wake-up time of under 6 μs. 

4.3.2.2.5 MSP430x4xx 
This series is said to be “ideal for low power metering and medical 

applications” [38]. It has a low operating voltage of 1.8-3.6V. These chips include 
Frequency Locked Loop (FLL) and Supply Voltage Supervisor (SVS) for better 
clock synchronization. Its specifications are: 4 – 120 KB flash/ROM, 256 B – 8 KB 
RAM, 14/32/48/56/68/72/80 GPIO lines, 10 – 12-bit SAR ADC, and 16-bit Sigma 
Delta ADC. The x4xx chips have a CPU speed of 8 MIPS. Its unique peripherals 
unavailable in the aforementioned series are a 32x32 multiplier, ESP430, and 
SCAN_IF.  

4.3.2.2.6 MSP430x5xx 
The x5xx series chips have a higher maximum clock rate of 25 MHz while 

still operating with low-power constraints and putting out 25 MIPS. It has an 
operating voltage of 1.8 – 3.6V. Its specifications are: up to 512 KB flash, up to 66 
KB RAM, 10/12-bit SAR ADC, 29/31/47/48/63/67/74/87 GPIO lines, high resolution 
PWM, and a backup battery switch among other similar peripherals from its sister 
families. Its power modes are: RAM retention (0.1 μA), real-time clock (2.5 μA), 
and MIPS active (165 μA). The wake-up time is less than 5 μs. 

4.3.2.2.7 MSP430x6xx 
The x6xx series chips can also run up to 25MHz with 25 MIPS. It operates 

at 1.8 – 3.6V as well. It features a special power management module for better 
power consumption and the USB integrated in it. Its specifications are: up to 512 
KB flash, up to 66 KB RAM, 12-bit SAR ADC, 74 GPIO lines, USB, LCD, power 
management module, and real-time clock (RTC). Its power modes are: RAM 
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retention (0.1 μA), real-time clock mode (2.5 μA), and MIPS active (165 μA). It has 
a wake-up time of under 5 μs. 

4.3.2.2.8 RF SoC (CC430) 
The RF SoC board integrates an RF transceiver at under 1 GHz, with a 1.8 

– 3.6V. Its specifications are: 20MHz, up to 32 KB flash, up to 4 KB RAM, 12-bit 
SAR ADC, 30/44 GPIO lines, and peripherals similar to the previous models (LCD, 
power management module, RTC, etc.). The power modes are: RAM retention (1 
μA), real-time clock (1.7 μA), MIPS active (180 μA). 

4.3.2.2.9 FRAM Series 
This series of chips features memory access speeds that are 100 times 

faster than the traditional flash memory times. FRAM does not require power for 
writes, so if power is lost, writes can still be finished. FRAM can be written over 
100 trillion cycles. EEPROM is not needed because of this resilience. Its 
specifications are: 8 – 24 MHz speed, 4 – 128 KB FRAM, 0.5 – 2 KB RAM, 10 or 
12-bit SAR ADC, 17 – 83 GPIO lines. It features peripherals rom its lower level 
sister series and also a new Extended Scan Interface, AES (Advanced Encryption 
Standard), and IR modulation. Its power modes are: RAM retention (.320 μA), real-
time clock (0.35 μA), and MIPS active (82 μA). 

4.3.2.2.10 Low Voltage Series 
There are two microcontrollers in the Low Voltage Series. They are the 

MSP430C09X and MSP430L092. Their low operating voltage range is 0.9 – 1.65V. 
Its specifications are: 4 MHz speed, 1 – 2 KB ROM, 2 KB SRAM, 8-bit SAR ADC, 
11 GPIO lines, two 16-bit timers, SVS, comparator, and the other basic peripherals 
available to all MSP430 implementations. Its power modes are: RAM retention (1 
μA), real-time clock (1.7 μA), and MIPS active (180 μA). 

4.3.2.3 Selection Rationale 

From the microcontrollers to consider and their features enumerated in 

4.3.2.1 & 4.3.2.2, the best choice for our microcontroller, considering the different 

characteristics of memory on the chips, GPIO, PWM outputs, USART pins, and 

I2C pins available, as well as the critical feature of ease of use and integration into 

the project with the microcomputer selection in mind, then the choice is clearly the 

ATmega328 chip. This has enough output ports and memory to handle the code 

size needed without providing too much over head on the project for this sub-

system. The availability to integrate the Arduino framework into the project also 

makes for a very easy way integrate the sub-system into the other systems with 

the needed outputs and inputs. 

This microcontroller will allow us to quickly, cheapy, and easily integrate a 

controls sub-system onto our robot and allow us more time and money to focus on 

developing new and novel concepts that this robot is attempting to accomplish 

without reinventing the microcontroller system since the Arduino framework has 

become ubiquitous in the amateur hobbyist community. 
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4.3.3 GPIO extenders 

Since SigSent is going to have numerous input and output devices 

connected to the microcontroller it is a wise decision to make use of a GPIO 

extender/extension. This would be an IC chip that would interface with the 

microcontroller over some communication protocol and handle commanding a 

portion of the outputs. This frees up the GPIO pins on the microcontroller allowing 

for less computation or processing by the microcontroller and more focus on 

commanding of the I/O devices. 

4.3.3.1 Pulse width modulation extender 

The majority of the I/O devices that interface with the microcontroller end 

up being the servo motors that drive the movement of the system. This can really 

hinder our performance as the microcontroller is much slower in comparison to the 

clock speeds that the microcomputer will be running at. This means efficiency and 

latency is of the utmost of importance when new commands from the 

microcomputer are being sent to the microcontroller. To ensure a clean command 

of the 18 servo motors, a pulse width modulation (PWM) extension integrated 

circuit (IC) will be used. This frees up commands and allows for more inputs if they 

are necessary. 

4.3.3.1.1 PCA9685 

This is a 16 channel LED controller, with each channel having a 4096-step 

PWM brightness control. The PCA9685 has a programmable frequency output 

from 24Hz to 1526Hz. This chip uses I2C as a communication protocol. The 

PCA9685 has an operating voltage of 2.3-5.5V with inputs and outputs being 5.5V 

tolerant. This chip has a driving current capability of up to 25mA. This IC also a 

fast-mode that allows it to 1MHz on the I2C bus. It also has the option for an 

external clock input that will accept up to 50MHz, instead of the internal 25MHz 

oscillator, allowing for synchronization of multiple devices. 

4.3.3.1.2 TLC5940 

This is a 16 channel LED driver, with each channel having a 4096-step 

grayscale PWM brightness control. It uses serial communication and has a data 

transfer rate of 30MHz. The TLC5940 has an operating voltage of 3-5.5V. This chip 

has a driving current capability of up to 60mA on less than 3.6V and up to 120mA 

on greater than 3.6V. This IC also has thermal protection in the form of an error 

flag that is thrown out the error handling pin. This does need a clock signal to shift 

incoming serial data for output. 

4.3.3.1.3 TLC5947 

This is a 24 channel LED driver, with each channel having a 4096-step 

grayscale PWM brightness control. It uses serial communication and has a data 

transfer rate of 30MHz. The TLC5947 has an operating voltage of 3-5.5V. his has 

a driving current capability of up to 30mA. This IC also has thermal protection in 
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the form of an automatic shutdown at over temperatures and restarts under normal 

temperatures again. This does need a clock signal to shift incoming serial data for 

output. This chip has an internal oscillator of 4MHz. 

4.3.3.1.4 SN3218 

This is an 18 channel LED driver, with each channel having a 256-step 

PWM brightness control. This chip uses I2C as a communication protocol with a 

maximum clock frequency of 400kHz. The SN3218 has an operating voltage of 

2.7-5.5V. his has a driving current capability of up to 23mA. This IC also has 

thermal protection in the form of an error flag that is thrown out the error handling 

pin. 

4.3.3.2 Selection Rationale 

From the pulse width modulation extenders to consider and their features 

enumerated in 4.3.3.1, the best choice for our pulse width modulation extenders, 

considering the distinctive characteristics of number of available channels, step 

size, output frequencies, communication protocols, operating voltage and output 

current for each channel, then the choice is clearly the TLC5947 chip. This has 

enough output ports channels to handle the amount of servo motors needed 

without providing too much over head on the project for this sub-system. While this 

is the largest size of channels from the chips put under comparison, it does have 

enough channels for all the leg movements on SigSent while leaving some 

available to add a pan and tilt to the camera onboard if need be. Also with this 

amount of PWM outputs all control commands can be sent to this single chip from 

the microcontroller allowing for slimming of code sizes and the need for only one 

command to be sent to this board to begin movements of the servo motors. 

This pulse width modulation extender will allow us to quickly, cheapy, and 

easily integrate extended output to the controls sub-system for the microcontroller 

onto our robot and allow us more time and money to focus on developing new and 

novel concepts that this robot is attempting to accomplish without reinventing the 

output capabilities for microcontrollers or having a niche microcontroller with 

extended PWM capabilities but risk the ease of use and integration into the system 

for it. 

4.3.4 Force/Pressure Sensor 

In order for SigSent to have an active suspension system, the system needs 

to know whether it is touching the ground or not and if it is, how planted or hard is 

the leg pressing into the ground. This will give a relatively accurate reading from 

all the legs to be able to tell if SigSent has a good stance/footing at the current 

moment.  

This especially becomes vital when the system is traversing over rough 

terrain that is bumpy in nature. SigSent needs some feedback as to whether it is 

touching the ground and if it is currently holding itself up on the current legs that 
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are touching the ground or is off balance and is about to become unstable. The 

plan for the force/pressure sensor is to place it on the end effectors of the two 

middle legs and also in between the bearing and the holder that the motors are 

mounted to. This would give an accurate reading on the end effectors and their 

contribution to stability as well as the other four legs. This coupled with the inertia 

measurement unit reading will show what the system needs to do to remain stable 

or to actively stabilize itself from a position. Due to the locations/ placements of the 

force sensors, it is a requirement that the force sensors are as thin/flat as possible, 

above most other specification, to not hinder the design or the solutions to the 

kinematics equations by adding size to the end effector, etc.  

4.3.4.1 Force Sensors under consideration 

The following force sensors are those that have properties viable to our 

project and will be objectively compared such that the best option under our 

constraints will be chosen for use in SigSent’s development. 

4.3.4.1.1 SingleTact Capacitor force sensors 

This force sensor is capable of measuring up to 100lbs of force while being 

0.35mm thick. This force sensor is capable of being three times more sensitive 

than a resistive force sensor. The sensing area of this sensor is 8mm or 15mm in 

diameter. It has an I2C interface making it easy to set up with microcontrollers. The 

SingleTact can also operate in temperatures up to 200oC with a temperature 

sensitivity of 0.2%/oC. This sensor has a repeatability performance of less than 

±2.5%, response time of less than 1 millisecond, and drift of less than 2% per 

logarithmic time scale. This is only an analog sensor and would require an 

amplifying circuit and analog to digital converter to properly measure the reading 

from the force sensor. This product family does have an accompanying electronic 

circuit that amplifies and outputs it as a voltage signal or converts the signal to an 

I2C signal for direct reading of the measurement. 

4.3.4.1.2 Interlink electronics FSR 400 Series 

This force sensor is capable of measuring up to approximately 5lbs of force 

while being 0.3mm thick. The sensing area of this sensor is 5 to 13mm in diameter. 

The FlexiForce can also operate in temperatures up to 85oC. This force sensor is 

also flexible and relatively easy to implement only needing an op amp circuit to get 

the output. This sensor has a repeatability performance of less than ± 2%, 

response time of less than 3 microseconds. This is only an analog sensor and 

would require an amplifying circuit and analog to digital converter to properly 

measure the reading from the force sensor. 

4.3.4.1.3 Tekscan FlexiForce ESS301 

This force sensor is capable of measuring up to 100lbs of force while being 

0.203mm thick. The sensing area of this sensor is 9.53mm in diameter. The 

FlexiForce can also operate in temperatures up to 85oC with a relative humidity of 
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up to 95%. This force sensor is also flexible and relatively easy to implement only 

needing an op amp circuit to get the output. This sensor has a repeatability 

performance of less than ±2.5%, response time of less than 5 microseconds, and 

drift of less than 3.8% per logarithmic time scale. This is only an analog sensor 

and would require an amplifying circuit and analog to digital converter to properly 

measure the reading from the force sensor.  

4.3.4.2 Selection Rationale 

From the force sensors to consider and their features enumerated in 

4.3.4.14.3.3.1, the best choice for our force sensor, considering the distinctive 

characteristics of capable weight able to be measured, sensor size, sensor 

thickness, communication protocol, operating temperature and humidity, and 

sensor measurement repeatability, then the choice is clearly the SingleTact 

Capcaitor Force sensors. This force sensor, while very similar to the other force 

sensors, has one clear advantage of coming with the amplification circuit already 

set up and ready to output data. As well as the added advantage of the ability of 

outputting I2C data directly to a microcontroller. This would save a lot of overhead 

and possible wasted hours calibrating the amplification circuitry to try and get a 

readable and reliable output. 

This force sensor would allow us to quickly and easily integrate a feedback 

input for the controls sub-system to the microcontroller onto our robot and allow us 

more time to focus on developing new and novel concepts that this robot is 

attempting to accomplish without reinventing the amplification circuits needed for 

the proper outputs. Due to limited budgeting and higher priorities in sensors or 

actuators, this sensor will have to be tabled for a later date to integrate into the 

controls sub-system with the microcontroller, if time and money allows for it. 

4.3.5 Lidar  
Lidar or Light Imaging, Detection, And Ranging or LIght raDAR is a 

“surveying method that measures distance to a target by illuminating that target 
with a pulsed laser light, and measuring the reflected pulses with a sensor. 
Differences in laser return times and wavelengths can then be used to make digital 
3D-representations of the target.” [39]. In our robot we will be using a 2D radio 
supplied by the Robotics Club at the University of Central Florida [40]. This Lidar 
is a Hokuyo UTM-30LX lidar which is capable of seeing 30 meters in day or night 
with a 270* view. The Lidar outputs a long vector of measurements in millimeters 
for each individual point, having a data point once every .25* for a total of 1440 
steps per full revolution of the laser assembly. [41] This data can then be easily 
represented as an absolute depth data that can be input into Gmapping (4.2.5.1)  
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Figure 17: Representation of Lidar output compared to Image [42] 

4.3.6 Camera 
To facilitate the computer vision in SigSent, a camera that is versatile 

independent on the time of day, has a resolution that is high enough for performant 

image classification, and meets our pricing standards will be chosen. 

4.3.6.1 CCD v CMOS 
There is an important distinction to be noted between CCD and CMOS 

based camera sensors, while CMOS has become popular in consumer cameras 
due to its very low price and small size, it is at the price of a significantly higher 
noise in image quality. CCS, while an order of magnitude more expensive than 
CMOS sensors has a much lower noise, creating significantly more reliable images 
that will lead to less errors in the robot’s computer vision. 

4.3.6.2 Day Vision versus Night Vision 
Since SigSent is designed to be operated during both daytime and nighttime 

operations care must be taken into how SigSent’s cameras will take in light both 
during the daytime, where the Sun could easily wash out images, and the nighttime 
where there could be very minimal lighting. This allows for three options for the 
robot to operate in both daytime and nighttime operations without human 
intervention. The first is to have a normal camera and equip the robot with a 
powerful light to flood the area in front of the camera with enough light for the robot 
to gain enough data to determine if there is a human out of place - however this 
makes the robot's position very easily known and the robot easier to avoid. The 
second is to have an IR camera that can detect IR wavelengths, giving the camera 
a form of night vision, however this means that the cameras would be at a 
disadvantage during daytimes as some colors would be washed out due to the sun 
broadcasting IR light. The third option is to have a camera similar to the prior option 
but with an automated IR-CUT filter that could operate during the daytime, allowing 
the camera to filter out IR light during daytime and remove that filter during 
nighttime allowing the camera to detect the IR light again. Each camera has some 
combination of these features and each could theoretically be modified to work in 
both day or night (by adding or removing an IR-CUT filter) or adding a flashlight, 
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depending on the features and their determined usefulness one of the above 
options will have to be chosen. 

4.3.6.3 Cameras Under Consideration 
The following cameras are those that we are considering due to their 

compatibility and performance. 

4.3.6.3.1 Raspberry Pi Cameras 
As the Raspberry Pi is being used as our robot’s microcomputer, cameras 

designed to work with the hardware are important to distinguish. 

4.3.6.3.1.1  Infrared 500W Focus Adjustable Night Vision Camera 
Module  -  BLACK 

This CMOS cameras has a dubious claim of having a 500 watt IR LED to 
light its surrounding, capability of detecting IR light, and a significant lack of 
documentation. This camera coming with an IR led built in is a significant feature 
which reduces the amount of modification needed for the camera to operate at 
night, however the lack of documentation for this camera significantly increases 
the risk of this product being unreliable and hard to integrate into the system. 

4.3.6.3.1.2  Raspberry Pi Infrared Camera Module (NoIR) V2 
This is a CMOS camera developed by Raspberry Pi and thus has workable 

amount of documentation associated with it as well as a more trustable brand to 
trust in. This camera uses the Sony IMX 219 PQ CMOS sensor with its IR Blocking 
filter removed allowing it to see at night when IR led’s are present, however with 
the IR filter removed images during the daytime may be washed out, requiring the 
team to modify a IR filter to cover the lens during daytime operations. This camera 
has a high resolution and a high FPS as well as automatic exposure control, 
automatic white balance and automatic black level calibration allowing for us to 
easily retrieve more color accurate and more up-to-date images from the sensor. 
This camera however lacks an option to adjust focus which means that the camera 
may be blurry if an object of interest is too close or too far away from the camera.  

4.3.6.3.1.3  Raspberry Pi Camera Module w/ Adjustable Focus and Night Vision 
This CMOS camera developed by Waveshare comes with an adjustable 

focus an am Omnivision OV5647 sensor with its IR filter removed. This sensor can 
capture 720p images at 60FPS or 640p images at 90FPS which is ideal so that we 
are always processing the most up to date images for SigSent. This camera also 
comes equipped with IR LED’s to help see at night, however there is no IR-CUT 
filter on it so we would need to modify that filter on to prevent images being washed 
out during the daytime. 

4.3.6.3.1.4  Raspberry Pi Camera Module w/ Fisheye Lens and Night Vision 
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with a 

fisheye lens with its IR filter removed. However this camera is not equipped with 
IR leds. These LED’s will need to be mounted with the camera, and the an IR filter 
installed to activate during daytime operations. The Fisheye lens will be very useful 
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as it will allow the robot to see more of its surroundings while moving less, 
conserving overall system energy. 

4.3.6.3.1.5  Raspberry Pi Camera Module w/ IR Cut Filter 
This CMOS Camera with the same sensor as in 4.3.6.3.1.3. Is fitted with an 

IR-CUT filter that we can use to automatically switch between nighttime and 
daytime activity without need for modification or human interaction. This camera 
also includes IR LEDs allowing for the camera to see during night without 
additional LEDs needing to be installed. 

4.3.6.3.2 BlackBird 2 3D FPV Camera 
This 3D camera created by FPV3DCAM uses a custom onboard IC that can 

send 680p images at 60hz in a variety of standard 3D formats. This camera has 
an impressive field of view and a high signal to noise ration for a CMOS sensor 
(45db). The camera also uses low power at 1.8W. According to the camera's 
documentation, we may need to install a heatsink on the camera to prevent 
overheating. This camera has an IR filter installed by default and does not appear 
to be modifiable, therefore for this camera to operate at night we would have to 
install a large flood light on the vehicle.  

4.3.6.3.3 Pixy CMUcam5 Image Sensor 
The Pixy CMUcam5 has a large community support and uses the 

Omnivision OV9715 CMOS sensor, outputting 720p at 30fps or 640p at 60fps. 
What distinguishes this camera from the others is that it has an onboard 
microcontroller which can handle basic image recognition, outsourcing some of the 
computational power from the microcomputer controlling the robot to within the 
camera module itself. This camera comes with a significant amount of 
documentation and community support reducing risk if there is an error or problem 
with the board or in our attempts to integrate it into our system. This camera does 
come with a non-modifiable IR filter installed, so in order for this camera to 
accomplish SigSent’s goals, we would need to install a large flood light on the 
vehicle. 

4.3.6.3.4 Logitech C920 
The Logitech C920 is a COTS web camera designed for video calling, while 

this cameras is not specifically the best choice for this project on paper, this camera 
has by far the easiest implementation since it uses generic USB drivers that work 
immediately with Linux being used on our microcomputer. Another benefit of the 
Logitech C920 is that the camera has a significant amount of community support 
both in the general market and in the hobbyist fields. 

4.3.6.3.5 FLIR Point Gray: Firefly MV 0.3 MP Color USB 2.0 (Aptina MT9V022) 
This CCD camera is a professional grade camera designed specifically for 

computer vision in an industrial environment. It captures images at 752x480 at 
60FPS and uses a standardized CS-mount lens allowing for a custom (yet pricey) 
ideal lens to be selected in the future. This camera will be able to sense IR 
wavelengths since there is no internal IR filter built into it. However it would require 
IR LEDs to illuminate a object of interest and an IR-CUT filter added for daytime 
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and nighttime operation. This camera has by far the best documentation and 
sensor sensitivity compared to the other sensors in folds and uses, like the 
Logitech c920 in 4.3.6.3.4. A generic USB driver that is easy to integrate into a 
Linux environment on SigSent’s microcomputer. 

4.3.6.4 Specifications 
The important specifications encompassed by a computer vision camera 

are outlined below to be compared among each candidate camera. 

4.3.6.4.1 Price 
Price is a self-explanatory constraint, as the price of the camera increases 

this relates linearly with the teams will to implement it due to our limited sponsored 
budget. 

4.3.6.4.2 Image Quality 
Image Quality is an almost qualitative measurement between these 

cameras since there is a significant variability between each of the camera’s 
reported specification and how they choose to both measure (or not measure) 
them. Due to this image quality is an amalgamation of the resolution, the number 
of megapixels, the Signal to Noise Ratio, Field of View, and focal length of each 
camera. Unfortunately, assigning some number to the above would never be an 
accurate representation.  

4.3.6.4.3 Frames Per Second 
Frames per second is a crucially important specification because this both 

determines how quickly our cameras are able to capture a situation but also can 
help make up for poorer image quality. The higher the FPS is, the more likely we 
should choose that camera. 

4.3.6.4.4 Night Vision 
Since the goal of SigSent is to be able to effectively work in both nighttime 

and daytime environments, it is important to weight into the decision on whether or 
not the camera has the ability to natively see IR light (the easiest/cheapest way to 
achieve night vision). If the cameras can see IR light then the camera will need a 
way to block IR light during the daytime to prevent the camera’s images being 
washed out by the sun, while if the camera cannot see IR, the robot will need to 
have a flood light installed on it so that that visible wavelengths can be seen at 
night. 

4.3.6.5 Results 
The results obtained below will decide which camera is chosen for the 

SigSent. They are outlined in tabular form to be easily compared. 
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4.3.6.5.1 Comparison 
Table 5: Comparison of Cameras 

Name 
Cost 
(USD) Resolution Megapixel 

S/N 
(db) 

Frame 
Rate 

IR 
(bool) 

Docs 
(bool) 

PiCam IR Adj 
w/ LED 18.67 NA 5 NA NA T F 

PiCam IR Adj 
Official 24.99 720 5 44.56 60 T T 

PiCam IR Adj 21.59 1080 5 36 30-120 T F 

PiCam IR 
Fisheye 32.99 1080 5 36 30-121 T F 

PiCam IR Adj 
Cut w/ LED 27.99 1080 5 36 30-122 T F 

Blackbird 2 3D 179 
3d = 
680*512 NA 45 60 F T 

Pixy 
CMUcam5 67 1280x800 NA 39 50 F T 

Logitech C920 55.68 1920x1080 3 NA 30 F T 

Firefly 275 752x480 0.3 52 60 T T 

 

4.3.6.5.2 Selection Rationale 
 From the cameras to consider and their features enumerated in 4.3.6.3 and 
in the comparisons in 0, the best choice for our camera, considering price, image 
quality, frames per second, signal to noise ration, modifications to work in night 
and day, and the amount of documentation/support for each product there is a 
decently clear winning of 4.3.6.3.1.5 (PiCam IR Adj Cut w/ LED) which has an IR-
CUt filter and LEDs already installed, uses the Raspberry Pi dedicated camera 
point, and the well documented Omnivision OV5647 sensor. This sensor has the 
modest price of $26.29 and requires the fewest modifications to work with our 
scenario while capitalizing on Raspberry Pi’s hardware (decided in 4.3.1.3.3) and 
all the documentation and community support that is associated with Raspberry 
Pi. This Camera will allow us to quickly, cheapy, and easily integrate vision onto 
our robot and allow us more time and money to focus on developing new and novel 
concepts that this robot is attempting to accomplish without reinventing the wheel 
on already established technology.  
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4.3.7 IMU 
An IMU will be used to detect the rotational acceleration of the SigSent robot 

and also keeping track of the vehicle’s orientation. Various IMU units are detailed 

below to be compared and scored such that the most optimal is selected for the 

SigSent. 

4.3.7.1 IMU’s under consideration 
The IMU’s that were researched below were under consideration for use in 

SigSent. There specifications were then found and compared. 

4.3.7.1.1 MPU-9250 
This IMU excels in power efficiency and a very high refresh rate. This IMU 

has a average sensor stability in its price range but at its high refresh rate this IMU 
shines above others.  

4.3.7.1.2 LSM9DS1TR 
 This IMU has one of the best gyroscope sensors within its price range, and 
very detailed documentation, however with its refresh rate being far below average 
even with its price range this sensor is almost nonviable.   

4.3.7.1.3 Sparton AHRS-8 
 This is a complete Attitude and heading reference system (AHRS) unit with 
extremely accurate sensors, however its price makes this sensor cost prohibitive, 
however the company that makes these sensors has been known to sponsor 
projects.  

4.3.7.1.4 VectorNav VN-100 
 The VectorNav VN-100 boast an extremely high refresh rate of 400hz and 
sensors comparable or even better than the AHRS-8, however once again its price 
makes this sensor cost prohibitive, however the company that makes these 
sensors has been known to sponsor projects.  

4.3.7.2 Specs 
Specifications important in choosing an IMU for SigSent’s use are detailed 

below such that each different unit can be objectively compared so that the best 

use-case for our project would be chosen that meets our demands and fits within 

our constraints. 

4.3.7.2.1 Price 
Price is a self-explanatory constraint, as the price of the IMU increases this 

relates linearly with the teams will to implement it due to our limited sponsored 
budget.  

4.3.7.2.2 Degrees of Freedom 
 IMU’s are incredibly important for autonomous navigation and control 
systems since they measure vital information such as absolute heading, 
acceleration in the 3 linear dimensions and acceleration in the 3 rotational 
dimensions. This totals to 9 degrees of freedom (absolute X,Y,Z rotational 
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directions from the magnetometer, the X,Y,Z linear accelerations, and roll, pitch, 
and yaw with the gyroscope.) Additionally there can sometimes be an added 10th 
degree of freedom in the implementation of an absolute or relative altimeter. For 
our platform to operate as expected we will need the 9 degrees of freedom to keep 
our vehicle autonomous and functioning appropriately.  

4.3.7.2.3 Average Power Consumption 
Power consumption is of utmost importance within the project as a whole 

since the less powered used overall increases the overall lifetime of the robot on 
a singular charge. 

4.3.7.2.4 Accelerometer Stability Scale Factor 
 Accelerometer Stability Scale Factor (SSF) is a quantifiable way to measure 
the accuracy of a Accelerometer by way of measuring the ratio of the sensors 
output compared to the input (placing the sensor under various linear G Forces), 
as the input and output is changed the linearity of this is measured as SSF.  

4.3.7.2.5 Gyroscope Stability Scale Factor 
 GyroScope Stability Scale Factor (SSF) is a quantifiable way to measure 
the accuracy of a gyroscope by way of measuring the ratio of the sensors output 
compared to the input (placing the sensor under various rotational G Forces), as 
the input and output is changed the linearity of this is measured as SSF.  

4.3.7.2.6 Refresh Rate 
 Refresh rate for the IMU is critical to the usefulness of an IMU as the more 
measurements that the IMU is able to produce, the more data we can provide to 
our sensor integration algorithm (potentially a Kalman Filter) with the GPS to get 
more and more accurate results that will help our navigation and path planning 
algorithms. 

4.3.7.3 Scores 
The scores were calculated such that the positive value of refresh rate 

boosted the unit’s score, and the undesirable specifications would lower a unit’s 

score. Based on the final values, the highest performing unit was chosen for use 

in the project. 

4.3.7.3.1 Formula 
 In order to quantifiably determine the relevance of one GPS Unit over 
another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 

 

Equation 2: Formula for IMU Comparison Score 

𝑅𝑒𝑙𝑎𝑣𝑒𝑛𝑐𝑒

=
𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑅𝑎𝑡𝑒2

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑆𝑆𝐹 ∗ 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 𝑆𝑆𝐹
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4.3.7.3.2 Specification Comparison and Score Results 
Table 6: IMU Comparison Table and Score Output 

Name Cost 
DO
F 

Comm 
protoc
ol 

Voltag
e 

AVG 
Powe
r 

Gyr
o 
SSF 

Acceleromet
er SSF 

Sampl
e Rate 

Overa
ll 
Score 

MPU-9250 
10.6
3 9 i2c 3.3 3.7 16.4 0.061 200 

1016.
6 

LSM9DS1T
R 6.33 9 i2c 3.3 4.6 8.75 0.061 80 

411.7
9 

AHRS-8 1350 10 USB 5 82.5 0.18 0.023 100 21.69 

VN-100 800 10 USB 3.3 45 0.16 0.04 400 
694.4
4 

4.3.7.3.3 Selection Rationale 
From the consensus of the score and the team, the MPU-9250 is the best 

option for SigSent based on its excellent refresh to cost, terrific power efficiency 
and acceptable sensor errors.  

4.3.8 GPS 
A GPS is necessary to keep track of the absolute position of the SigSent 

vehicle as it navigates its route. Research had to be done on hardware that would 

provide the best performance under the constraints allotted to us. 

4.3.8.1 GPS’s under consideration 
The GPS units below were possible considerations for use in the SigSent 

vehicle. They have their specifications described below to be objectively 

compared. 

4.3.8.1.1 SkyTraq Venus638FLPx  
 This GPS unit has the best GPS refresh rate of all GPS units under 
consideration at 20hz. That refresh rate is key because of inherent flaws to the 
IMU the GPS having a fast refresh rate means that navigation and mapping errors 
will be reduced significantly. This sensor however has a lower sensitivity at -165dB 
meaning that obstructions in the way such as buildings or atmospheric events will 
have an impact on performance.  

4.3.8.1.2 LocoSys LS20031 
 This sensor has lackluster documentation and a higher cost but with the 
benefit of using less power than the SkyTraq Venus638FLPx.   

4.3.8.1.3 Maestro A2135-H 
 This GPS unit has a significant amount of documentation, and has the 
lowest price by far while also having the highest sensitivity of the bunch. However, 
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it has a below average refresh rate of only 5hz and uses the SPI bus while most 
sensors are using either I2C or USB.  

4.3.8.1.4 Linx RXM-GNSS-TM-B 
 This GPS unit uses a UART interface and has a respectable refresh time 
with a high sensitivity receiver like in the SkyTraq Venus638FLPx.  

4.3.8.2 Specifications 
The specifications below encompass the necessary items we value in the 

performance of the SigSent vehicle. Each of the GPS units that were under 

consideration have had their details listed out such that the specifications below 

could be easily compared between each one. 

4.3.8.2.1 Price 
Price is a self-explanatory constraint, as the price of the GPS increases this 

relates linearly with the teams will to implement it due to our limited sponsored 
budget.  

4.3.8.2.2 Refresh Rate 
 The Refresh rate of a GPS unit is how often it is able to contact, calculate, 
and send out a stable GPS coordinate. This is a critical specification because as 
the refresh increases the inaccuracies inherently introduced to our navigation and 
path planning by the IMU are reduced significantly.  

4.3.8.2.3 Average Power Consumption 
 Power consumption is of utmost importance within the project as a whole 
since the less powered used overall increases the overall lifetime of the robot on 
a singular charge. 

4.3.8.2.4 Sensitivity 
 Sensitivity is another critical specification, this is the ability of the GPS unit 
to properly detect and receive the packets of information coming from the GPS 
satellites around Earth. Measured in decibels, a single unit increase in the positive 
direction is equivalent to a significant increase in sensitivity.  

4.3.8.2.5 Accuracy 
 Accuracy is a measurement of average tolerance for the GPS device 
measured in meters. Accuracy says: given a GPS coordinate the true position of 
the device is within the accuracy given. For all of the GPS units under 
consideration, the accuracy is given as 2.5m, this is a fairly standard unit and is 
more of a limitation of the satellites than of the sensors.   

4.3.8.3 Scores 
To choose the best fitting GPS, they were scored positively based mostly 

on their refresh rate, as well as their sensitivity, and had their scores negatively 

affected by their cost, power consumption, and accuracy error. 
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4.3.8.3.1 Formula 
In order to quantifiably determine the relevance of one GPS Unit over 

another a simple formula was devised after analyzing the available specifications 
found in the documentation for each of the microcontrollers. 

Equation 3: Score for calculating optimal GPS unit selection 

𝑆𝑐𝑜𝑟𝑒 =
𝑅𝑒𝑓𝑟𝑒𝑠ℎ 𝑅𝑎𝑡𝑒2 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑠 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑎𝑡𝑖𝑜

𝐶𝑜𝑠𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

 

Table 7: GPS Comparison Table and Score Output 

4.3.8.3.2 Specification Comparison and Score Results 

Name Cost Refresh Voltage Power Comm Sensitivity 
(Linear 
Ratio) Accuracy 

Total 
Score 

Venus638FLPx 49.95 20 3.3 60 I2C -165 562.34 2.5 30.02 

LS20031 60 5 3.3 41 TTL -165 562.34 2.5 2.29 

A2135-H 20.9 5 3.3 31 SPI -163 707.95 2.5 10.93 

Linx RXM-
GNSS-TM-B 34.33 10 3.3 30 UART -165 562.34 2.5 21.84 

 

4.3.8.3.3 Selection Rationale 

From the Score which sums up that the Venus638FLPx is the best option 

due to its extremely high refresh rate alone. The Venus638FLPx despite its higher 

power consumption, slightly lower sensitivity, and slightly higher price is the best 

decision for the team because a high refresh rate for the GPS will ensure that our 

robot can more accurately keep track of its position and accurately follow a GPS 

weight point and map its surroundings. 

4.3.9 Servo motors 
Servo motors will be in control of the legs of SigSent. Precisely a set of three 

servo motors will be used to operate the movements of each leg with control 

signals sent to it by the main processor in SigSent’s architecture. Various servo 

motor units are detailed below to be compared and scored such that the most 

optimal is selected for the control SigSent. 

4.3.9.1 Servo motors Under Consideration 
The servos motors that were researched below were under consideration 

for use in SigSent. There specifications were then found and compared. 

4.3.9.1.1 HS-755HB Servo 

This servo motor is priced at $27.99 – 47.99, depending on the features 
included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 183oz-
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in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec 
per 60o at the max voltage of 6.0V. Lastly the gear material of the servo motor is 
made up of Karbonite, with the weight being 3.88oz (110g) 

4.3.9.1.2 HS-755MG Servo 

This servo motor is priced at $39.99 – 59.99, depending on the features 
included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 200oz-
in(14kg-cm) at the max voltage of 6.0V. This servo motor has a speed of 0.23sec 
per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo motor is 
made up of metal, with the weight being 4.12oz (117g). 

4.3.9.1.3 HS-765HB Servo  

This servo motor is priced at $39.99 – 59.99, depending on the features 
included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-6.0V with the stall torque being 
183.31oz-in(13.2kg-cm) at the max voltage of 6.0V. This servo motor has a speed 
of 0.23sec per 60o at the max voltage of 6.0V. Lastly, the gear material of the servo 
motor is made up of Karbonite, with the weight being 3.6oz (102g). 

4.3.9.1.4 HS-5646WP Servo 

This servo motor is priced at $54.99 – 74.99, depending on the features 
included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 6.0-7.4V with the stall torque being 179oz-
in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.18sec 
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is 
made up of three Metal Gears and one Nylon Gear, with the weight being 2.15oz 
(61g). 

4.3.9.1.5 D645MW Servo 

This servo motor is priced at $39.99 – 59.99, depending on the features 
included at the time of purchase (if increased rotation or continuous rotation is 
wanted). The operating voltage of this is 4.8-7.4V with the stall torque being 
180.1oz-in(12.9kg-cm) at the max voltage of 7.4V. This servo motor has a speed 
of 0.17sec per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo 
motor is made up of metal, with the weight being 2.11oz (60g). 

4.3.9.1.6 S9470SV Servo 

This servo motor is priced at $99.99, depending on the features included at 
the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 6.0-7.4V with the stall torque being 191.7oz-in(13.8kg-
cm) at the max voltage of 7.4V. This servo motor has a speed of 0.09sec per 60o 
at the max voltage of 7.4V. Lastly, the gear material of the servo motor is made up 
of metal, with the weight being 1.90oz (54g). 

4.3.9.1.7 HS-8330SH Servo 

This servo motor is priced at $89.99, depending on the features included at 
the time of purchase (if increased rotation oranime continuous rotation is wanted). 
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The operating voltage of this is 6.0-7.4V with the stall torque being 180.53oz-
in(13kg-cm) at the max voltage of 7.4V. This servo motor has a speed of 0.07sec 
per 60o at the max voltage of 7.4V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 2.32oz (66g) 

4.3.9.1.8 DynaMixel AX-12A 

This servo motor is priced at $44.99, depending on the features included at 
the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 9.0-12V with the stall torque being 212.41 oz-in(15.296 
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per 
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 1.88oz (54.6g) 

4.3.9.1.9 DynaMixel AX-18A  

This servo motor is priced at $94.89, depending on the features included at 
the time of purchase (if increased rotation or continuous rotation is wanted). The 
operating voltage of this is 9.0-12V with the stall torque being 254.90oz-in(18.355 
kg-cm) at the max voltage of 12.0V. This servo motor has a speed of 0.07sec per 
60o at the max voltage of 12.0V. Lastly, the gear material of the servo motor is 
made up of steel, with the weight being 1.88oz (54.6g) 

4.3.9.2 Specifications 
The specifications below encompass general constraints on servo motors. 

The price, operating voltage, torque performance at these voltages, and speed are 

all items to consider in comparing the servos. 

4.3.9.2.1 Price 
Price is a self-explanatory constraint, as the price of the servo increases 

this relates linearly with the teams will to implement it due to our limited sponsored 
budget.  

4.3.9.2.2 Max Voltage 
The maximum voltage of the servos is an important consideration, ideally 

the servos would be able to be run directly off the batteries, which are 4s (12V-

16.8v) however that is not the industry standard, most consumers off the shelf 

(COTS) servos are between 4.8V-6V with some capable of going up to 7.4V. With 

this consideration in fact, we want to choose a servo with a higher voltage because 

that will lead to less losses when regulating the DC power of the batteries down to 

the voltage required by the servo.  

4.3.9.2.3 Torque at Max Voltage 

The toque at max voltage is the critical spec for the servos as a large 

amount of torque will be required to properly move the legs of SigSent, the higher 

the torque the better, we choose to compare the torque at max voltage over the 

minimum voltage since the voltage being sent to the servos will be regulated, and 

regulated at the maximum compatible voltage the servos can take. This also allows 
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us to more accurately anticipate the amount of torque that the servos can provide 

as torque varies with voltage.  

4.3.9.2.3.1 Minimum Required Torque  

Due to the design of the legs of the robot, SigSent will have a critical 

requirement of minimum required torque in order for the hexapod legs to carry the 

weight of the robot in a stationary position but also in an active suspension or 

walking configuration. To calculate the stationary position a free body diagram 

needs to be constructed to calculate the moment arm from the main body to the 

joints of the legs on sig sent. As seen below in Figure 18 & Figure 19 & Figure 20: 

 

Figure 18: Moment arm for stationary extended position at 1350(degree) position 

 

Figure 19: Moment arm in 105o degree angle position 
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Figure 20: Moment arm in 90o degree angle position 

 

Since a model of the current mechanical design has already be created 

pulling the measurements from the design configuration to calculate the toque on 

the joints created from the robot’s body/weight. From this it was determined in the 

standard stationary configuration shown in Figure 18: Moment arm for stationary 

extended position at 1350(degree) position that the minimum torque needed for 

movement of the body is 217.75 oz-in with an approximation of total weight of the 

system at 4kg. This makes the leg configuration shown in Figure 18 to be not viable 

as this leaves no margin of safety for the servo motors to operate. Thus, making a 

need for a different leg configuration, this make the configuration in Figure 19: 

Moment arm in 105o degree angle position more viable as the required torque for 

this position is 157.087 oz-in. This leaves a margin of safety of approximately 35% 

making the configuration very feasible. The last configuration in Figure 20: Moment 

arm in 90o degree angle position makes a required torque of 122.75 

4.3.9.2.4 Speed at Max Voltage 

The speed at max voltage is a measurement of the amount of time it takes 

for a servo to move 60 degrees under no load, we need the speed of the servos to 

be as high as possible so that the legs can move in a quick and responsive fashion 

to properly support SigSent and the various multi-terrain environments that it must 

operate in.  

4.3.9.2.5 Weight 

Since the servos are within the legs, the servo weight must be a minimum 

to reduce the amount of torque required for the servos to push and pull while in 

walking mode or in suspension during driving.  
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4.3.9.3 Scores 

The scores below give a positive weight to better torque and speed. A 

negative weight is given to cost and weight of each servo. 

4.3.9.3.1 Formula 

In order to quantifiably determine the relevance of one motor over another 

a simple formula was devised after analyzing the available specifications found in 

the documentation for each of the motors. 

Equation 4: Score for Servo Motors 

𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑆𝑝𝑒𝑒𝑑

𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡
 

4.3.9.3.2 Comparison and Score Results 
Table 8: Specification Comparison of Servo Motors 

Description Weight Stall 
Torque 

Speed Price Score 

HS‑755HB  3.88oz (110g) 183 0.23 $28.00 $0.00 

HS‑765HB 3.6oz (102g)  183 0.23 $40.00 $0.00 

HS‑755MG 4.12oz (117g)  200 0.23 $40.00 $0.00 

HS‑5646WP  2.15oz (61g) 179 0.18 $55.00 $0.27 

D645MW  2.11oz (60g) 180 0.17 $40.00 $0.36 

S9470SV 1.90 oz. (54g) 191.7 0.09 $100.00 $0.09 

HS‑8330SH 2.32oz (66g)  180 0.07 $90.00 $0.06 

DynaMixel AX-12A 2.32oz (66g)  180 0.1695 $45.00 $0.29 

DynaMixel AX-18A 2.32oz (66g)  180 0.1031 $95.00 $0.08 

4.3.9.3.3 Selection Rationale 
From the servo motors to consider and their features enumerated in 4.3.9.1, 

the best choice for our servo motors, considering the distinctive characteristics of 

weight, stall torque, speed, and price, then the choice is the DynaMixel AX-12A. 

This component needed major consideration and comparison as it is a critical 

requirement for the hexapod to even move its legs in a walking configuration let 

alone standing upright under its own weight. The weight of this servo compared to 

its stall torque puts it in a league above most others. The final reasoning was that 

DynaMixel sell these servo motors in bulk orders allowing for a massive price 

reduction that fall within our projected budget without putting that component at its 

limits of pricing. 

This servo motor will allow us to quickly, cheapy, and easily create and 

integrate the controls sub-system for the microcontroller onto our robot and allow 

us more time and money to focus on developing new and novel concepts that this 

robot is attempting to accomplish without reinventing or redesigning the whole leg 

system and its movement scheme. 
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4.3.10 Motors 
The Motors act as SigSent’s end effector and source that powers the rotation of 

the wheels moving SigSent forwardly while in driving mode efficiently. Motor 

selection is important to both minimize weight and maximize speed.  

4.3.10.1 Motors Under Consideration 

• AX-4114C 330KV 

• 4114-320KV Turnigy Multistar 

• Turnigy Aerodrive SK3 - 4250-410KV 

• Turnigy Aerodrive SK3 - 4250-350KV 

• Quanum MT Series 4012 400KV 

4.3.10.2 Specifications 
The specifications below encompass the necessary items we value in the 

performance of the SigSent vehicle. Each of the motor units that were under 

consideration have had their details listed out such that the specifications below 

could be easily compared between each one. 

4.3.10.2.1 Price 
Price is a self-explanatory constraint, as the price of the motor increases 

this relates linearly with the teams will to implement it due to our limited sponsored 
budget.  

4.3.10.2.2 Max Voltage 
The maximum voltage the motors is an important consideration to take note 

of as it will impact both the amount of power the motors can output, the resultant 

RPM of the wheel, and the choice of battery and ESC. The choice was made to 

have a motor voltage to be compatible with a 4S battery (12-16.8) as that was 

considered a viable compromise between power efficiency, the RPM needed to 

spin the wheels (as a function of kV) without needed a gear ratio.  

4.3.10.2.3 KV 
KV is a measurement of torque that relates to the number of windings within 

the number, generally speaking the lower the KV the higher the torque, the lower 

the RPM the motor can produce. To reduce simplicity SigSent is intended to have 

the wheel directly attached to the motor in a 1:1 gearing ratio, so a motor that has 

a low KV (and thus high torque) is necessary. KV also relates to RPM per volt 

under no load. Since SigSent is intended to be able to run at 15mph in wheeled 

mode, we set a very liberal safety factor of finding the RPM at 25 MPH to account 

for when the vehicle is under load, with our wheels at a 2” diameter the motor 

would need to spin at roughly 4000 RPM, with the motor running at worst case 12V 

and best case 16.8V, we would need a KV rating of around between 300-400.  
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4.3.10.2.4 Max Current 

The maximum current that the motor can handle is important to consider to 

ensure that the motor will not stall when attempting to move the vehicle, and for 

calculating the current rating required for the ESC, and the C rating for the battery 

along with general infrastructure requirements such as wire gauge to supply the 

power and trace widths through a PCB.  

4.3.10.2.5 Weight 

Since the motors are at the ends of the legs, the motor weight must be a 

minimum to reduce the amount of torque required for the servos to push and pull 

while in walking mode or in suspension during driving.  

4.3.10.3 Scores 

To determine the best motor to be used for SigSent, the max current of each 

one positively increased a motor’s score while the cost and weight negatively 

affected its score. 

4.3.10.3.1 Formula 

In order to quantifiably determine the relevance of one motor over another 

a simple formula was devised after analyzing the available specifications found in 

the documentation for each of the motors. Since kV and voltage must be those 

values, they more filter out incompatible motors rather than effect the score of any 

motor over another.  

Equation 5: Score for Motors 

𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑎𝑥 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡
 

4.3.10.3.1.1 Comparison and Score Results 
Table 9: Specification Comparison of Motors 

Description Weight Kv Max 
current 

Price Score 

AX-4114C 330KV 180 330 28 16.6 9.37 

4114-320KV Turnigy 
Multistar 

217 320 30 25.8 5.37 

Turnigy Aerodrive SK3 - 
4250-410KV 

415 410 55 36.8 3.6 

Turnigy Aerodrive SK3 - 
4250-350KV 

423 350 53 36.9 3.39 

Quanum MT Series 4012 
400KV 

266 400 16 20 3.01 
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4.3.10.3.2 Selection Rationale 
Based off of the overall score and the low mass of the motor and low cost, 

we have chosen to use the AX-4114C 330KV. This motor will give us the necessary 
torque required to move the vehicle at the speeds we need it to with some 
additional overhead while being very cost effective.   

4.3.11 Electronic Speed Controller (ESC) 
SigSent will utilize ESCs to drive its motorized wheels at precisely controlled 

speeds. Differential drive of the wheels enables steering of the unit and is 

accomplished through setting the various wheels to rotate at dissimilar speeds. 

4.3.11.1 ESC Requirements 

• Each speed controller needs to be able to supply a constant output of 28 

amps to enable the full power range of the motor it’s driving. 

• Needs to be able to handle a 4s lipoly voltage input. 

4.3.11.2 ESCs Under Consideration 

• Turnigy MultiStar 32bit 30A Race Spec ESC 2~4S Naked 

• Turnigy K-Force 30A Brushless ESC 

• Hobby King 30A ESC 3A UBEC 

Table 10: Comparison of ESCs Under Consideration 

Part # MultiStar K-Force Hobby King 

# of Cells 2 – 4 2 – 6  2 – 4 

Size 28 x 14 x 5 mm 59 x 24 x 7mm 54 x 26 x 11mm 

Weight 9 g 38 g 32 g 

4.3.11.3 ESC Selection 

The Turnigy MultiStar 30A Race Spec ESC is the most appropriate choice 

for SigSent’s speed controllers due to its small size and low weight. The size and 

weight advantage stills from the ESC’s exclusion of a battery elimination circuit, 

which is unnecessary with a 5V power supply already present on SigSent. 

Additionally, the ESC can be purchased without any connectors installed, allowing 

easier adaptation for use in SigSent.  

4.3.12 Fuel Gauge 
The fuel gauge is used to determine the remaining battery available for the 

robot so that the user operating the unit will know its limits on distance to travel 

and available remaining surveillance times. 

4.3.12.1 Fuel Gauge Requirements 

• Communicate with the microcomputer via I2C. 

• Accurately measure a 4s LiPoly battery. 

4.3.12.2 Gauges under consideration 

• TI BQ34Z100-G1 

https://hobbyking.com/en_us/multistar-32bit-30a-0-lite-naked.html?___store=en_us
https://hobbyking.com/en_us/turnigy-k-force-30a-brushless-esc-opto.html?___store=en_us
https://hobbyking.com/en_us/hobby-king-30a-esc-3a-ubec.html?___store=en_us
http://www.ti.com/product/BQ34Z100-G1/description
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• LT LTC2943 

• Maxim Integrated MAX17205 

 
Table 11: Comparison of Gauges Under Consideration 

Part # BQ34Z100-G1 LTC2943 MAX17205 

Communication 
Protocol 

I2C, HDQ I2C, SMBus I2C 

Quiescent 
Current 

145 A 80 A 25 A 

Voltage Input 3 – 65 V 3.6 – 20 V 4.2 – 20 V 

Packaging 14-Pin TSSOP 8-lead DFN 14 TDFN-EP or 15 
WLP 

4.3.12.3 Fuel Gauge Selection 
The Maxim Integrated MAX17205 is the most appropriate fuel gauge for 

SigSent due to its low quiescent current and ease of use. It boasts the lowest 

supply current while active, and unlike the BQ34Z100-G1, requires no additional 

voltage regulators. 

4.3.13 Battery 
SigSent’s mobile operation will be enabled by a high-capacity battery. It 

needs to have a large enough capacity to meet the operating time requirements 

specified. Below are different battery types, estimated loads from our whole 

system, and specific batteries we are considering for use. One battery will be 

chosen after objectively comparing them all together. 

4.3.13.1 Battery Chemistries Under Consideration 

• Nickel-Metal Hydride (NiMH) 

• Lithium-Ion 

• Lithium Polymer (Lipo) 

Table 12: Comparison of Battery Chemistries [43] 

Chemistry NiMH Lithium Ion Lipo 

Nominal Cell 
Voltage 

1.25 V 3.6 V 3.6 V 

Gravimetric 
Energy Density 

60 – 120 110 – 160 100-130 

Discharge Rate 0.5 C 1 C 1 C 

Cycle Life 300 – 500 500 – 1000 300 – 500 

Charging Rate 0.5 C 0.5 C 0.5 C 

 

Lithium based batteries are most appropriate for SigSent due to their significantly 

higher energy density. 

http://www.linear.com/product/LTC2943
https://www.maximintegrated.com/en/products/power/battery-management/MAX17205.html/tb_tab0
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4.3.13.2 Estimated Electrical Loads 
Table 13: Estimated Electrical Loads 

Part Typical 
Current 
Draw (A) 

Max 
Current 
Draw 

Typical 
Operating 
Voltage 
(V) 

Typical 
Power 
Draw 
(W) 

Qty Duty 
Cycle 
(% of 
hour) 

Typical 
Hourly 
Energy 
(WH) 

Servo 0.4 0.9 12 4.8 18 25 21.6 

Motor 14 28 14.8 207.2 4 25 207.2 

Microcontroller 1.5 2.5 5 12.5 1 100 12.5 

IMU 0.004  3.3 0.02 1 100 0.02 

GPS 0.068  3.3 0.2 1 100 0.2 

Speaker/Amplifier 1 1.6 5 5 1 5 0.25 

Lidar 0.7 1 12 8.4 1 100 10 

Light Source 0.9  12 10 1 100 10 

 

4.3.13.3 Battery Requirements 

• Must be able to supply 100 A of current continuously to support the highest 

power mode. 

• Must be able to fit inside SigSent’s abdomen. 

• Must have a relatively high energy density and specific energy. 

• Must be a single pack battery solution to maximize energy density, and 

minimize power system complexity. 

4.3.13.4 Batteries Under Consideration 

• MultiStar 912700006-0 

• L&E Battery LND3S956 

• Turnigy 9171001348-0 

Table 14: Battery Comparison 

Part # 912700006-0 LND3S956 9171001348-0 

Capacity 10000 mAh 9500 mAh 6400 mAh 

Nominal Voltage 14.8 V 11.1 V 11.1 V 

Dimensions 160 x 65 x 36mm 155.0 x 44.5 x 41.0 mm 135 x 45 x 42 mm 

Weight 804g 588g 485g 

Discharge Rate 10 C / 100 A 65 C / 617.5 A 30 C / 192 A 

Energy Capacity 148 W 105 W 71 W 

Charging Rate 1 C 1 C 2 C 

4.3.13.5 Battery Selection 

The MultiStar High Capacity 10000mAh 4S Lipo pack (912700006-0) is the 

most appropriate battery for SigSent due to its impressive specific energy, energy 

density, and relatively low cost. Although its discharge rate is significantly lower 

than that of the LND3S956 and 9171001348-0, the MultiStar can supply sufficient 

current at an ample margin, and at a higher voltage. 

https://hobbyking.com/en_us/multistar-high-capacity-4s-10000mah-multi-rotor-lipo-pack.html
http://dirtcheaprc.com/shop/l-e-battery-lnd/11-1v-9500mah-3s-cell-65c-lipo-battery-pack-w-traxxas-high-current-style-connector-x-maxx-slash-4x4-xo-1-rally/
https://hobbyking.com/en_us/turnigy-nano-tech-6400mah-3s-30c-lipoly-battery-w-traxxas-connector.html
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4.3.14 Audio Amplifier 
The audio amplifier will be used to boost the signal of the microcomputer’s 

audio output and directly power the unit’s speakers. 

4.3.14.1 Amplifier Requirements 

• Needs to integrate with SigSent’s microcontroller. If discrete audio outputs 
are not included in the microcontroller, functionality can be achieved with a 
USB Audio Adapter: https://www.adafruit.com/product/1475 

• Needs to be relatively power-efficient, using a Class-D amplifier. 

• Needs to provide 8 watts output to a 4 Ohm impedance load. 

• Needs to output sound with minimal harmonic distortion to ensure 
comprehension of vocal commands provided through the speaker. 

4.3.14.2 Amplifiers Under Consideration 

• TI TAS5411-Q1 

• Rohm Semiconductor BD28412MUV 

• Maxim Integrated MAX9736B 

 
Table 15: Comparison of Amplifiers Under Consideration 

Part # TAS5411-Q1 BD28412MUV MAX9736B 

Power Output 8 W @ 4  2x 8 W @ 8  12 W @ 4  

Voltage Supply 4.5 – 18 V 4.5 – 13 V 8 – 28 V 

Quiescent 
Current 

16 mA 32 45 mA 

I/O I2C Boolean Boolean 

4.3.14.3 Amplifier Selection 
The TAS5411-Q1 is the most appropriate amplifier for SigSent with its 

minimal quiescent current draw and design-friendly I2C control architecture. 

4.3.15 Speaker 
A speaker will be used to relay commands from SigSent’s operator to 

individuals that the unit encounters. Additionally, the speaker can be used to play 

a siren to deter trespassers or animals. 

4.3.15.1 Speaker Requirements 

• Suitable for environmental exposure. Water resistant, 0º C - 50º C in high 
humidity. 

• Responsive across the voiceband (300 hz - 3.4 khz). 

• Relatively small so that it may be mounted on top of SigSent and directed 
in its field of view. 

• High efficiency so that the need for power amplification is minimized. 

https://www.adafruit.com/product/1475
http://www.ti.com/product/TAS5411-Q1
http://www.rohm.com/web/global/products/-/product/BD28412MUV
https://www.maximintegrated.com/en/products/analog/audio/MAX9736.html
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4.3.15.2 Speakers Under Consideration 

• PUI Inc.’s AS07104PO-WR-R 

• PUI Inc.’s AS07708PS-2-WR-R 

• PUI Inc.’s AS06608PS-WR-R 

Table 16 Comparison of Speakers Under Consideration 

Part # AS07104PO-WR-
R 

AS07708PS-2-
WR-R 

AS06608PS-WR-
R 

Frequency 
Response 

100Hz~20kHz 250Hz~10kHz 230Hz~12kHz 

Dimensions 2.795" L x 1.614" 
W x 0.984" H 

3.032" L x 3.032" 
W x 1.063" H 

2.610" L x 2.610" 
W x 1.142" H 

Sensitivity 86.00 dBa @ 1W 
/ 1 m ~= 92.00 

dBa @ 1W / 0.5m 

90.00 dBa @ 1W / 
0.5 m 

95.00 dBa @ 1W / 
0.5 m 

Rated Power 3 W @ 4 Ohm 4 W @ 8 Ohm 4 W @ 8 Ohm 

Environmental 
Envelope 

-20º C ~ 60º C, 
Water resistant 

-40º C ~ 85º C, 
Water resistant 

-20º C ~ 50º C, 
Water resistant 

4.3.15.3 Speaker Selection 
The AS07708PS-2-WR-R is the most appropriate speaker for SigSent due 

to its sufficient frequency response, suitable form factor, sensitivity, and rated 
power. It’s considerable environmental testing provides the most confidence for its 
long-term reliability during operation outdoors. 

Equation 6: Estimated SPL at 10 meters from the unit. 

𝑆𝑃𝐿@10𝑚 = 90 + 10(log 4) −  20 (log
0.5

10
 ) ≈ 70𝑑𝐵 

With an appropriately matched amplifier powering the speaker at its rated 
wattage, the speaker should output sound at 70 dB, well above the required 60 
dB. 

4.3.16 Microphone 
A microphone will be used for communicating vocal responses through the 

SigSent robot. The human operator can speak into their microphone at their base 

station which will then be projected from the SigSent speaker. Audio can also be 

transmitted from the robot to the base station by a microphone mounted on the 

vehicle so that the operator can communicate with agents nearby the robot. 

4.3.16.1 Microphone Requirements 

• Needs to integrate with SigSent’s microcomputer. 

• Needs to minimize background noise in order to hear a subject’s speech 
outdoors. 

• Needs to survive outdoor environmental use. 

• Needs to be relatively small. 

http://www.puiaudio.com/product-detail.aspx?categoryId=6&partnumber=AS07104PO-WR-R
http://www.puiaudio.com/product-detail.aspx?categoryId=6&partnumber=AS07708PS-2-WR-R
http://www.puiaudio.com/product-detail.aspx?categoryId=6&partnumber=AS06608PS-WR-R
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4.3.16.2 Microphones Under Consideration 

• MicW iShotgun 

• PlayStation Eye 

• Rode VideoMic Me 

Table 17 Microphone Comparison 

Part # iShotgun PlayStation Eye VideoMic Me 

Frequency 
Response 

100Hz~18kHz ? 100 Hz – 20 kHz 

Dimensions 136 l x 8 d mm 80 x 56 x 65 38 x 21 x 80 mm 

Sensitivity -42 dB ? -33 dB 

Cost $200 $7 $60 

4.3.16.3 Microphone Selection 
The PlayStation Eye’s incorporated microphone array is the most 

appropriate device for SigSent based on testimony of users utilizing the device for 

similar project goals. The device is appropriately sized, easily integrated through 

its USB connection, and designed for speech recognition.  

4.3.17 Lighting System 
The lighting system will be used to provide adequate lighting for the 

SigSent’s vision-based operations. It will be mounted on the robot to light up the 

area around the robot. The computer vision modules rely on visibility, and the 

human operating the unit will need enough light to get a proper image from the 

robot to view the area it is providing surveillance to. 

4.3.17.1 Requirements 

• Suitable for exposure to the expected area of operation, meaning at least 
IP67 certified with an operating temperatures of 0º C - 50º C. 

• DC powered. 

• Efficient. 

• Light weight. 

• Appreciably bright to light the area in front of SigSent for acceptable color 
vision from the camera 

4.3.17.2 Light Sources Under Consideration 

• superbrightleds.com AUX-6W-RE120 

• superbrightleds.com AUX-20W-Dx 

• superbrightleds.com WL-17W-RE60 

Table 18 Comparison of Light Sources Under Consideration 

Part # AUX-6W-RE120 AUX-20W-Dx WL-17W-RE60 

Dimensions 3.67” L x 0.92” W 
x 2.05” H 

3.95” L x 2.1” W x 
2.39” H 

6.3” L x 2.2” W x 
1.78” H 

Weight 0.27 kg 0.43 kg 0.41 kg 

http://www.mic-w.com/product.php?id=77
https://www.amazon.com/Sony-PlayStation-Camera-Bulk-Packaging-Pc/dp/B0072I2240/ref=pd_lpo_sbs_63_t_0?_encoding=UTF8&psc=1&refRID=Z3DXCNM89PMGWWBRJ080
http://www.rode.com/microphones/videomicme
https://www.superbrightleds.com/moreinfo/led-light-pods/3-and-one-half-inch-rectangular-6-watt-led-mini-auxiliary-flood-light/2201/4923/#tab/Specifications
https://www.superbrightleds.com/moreinfo/led-light-pods/20w-mini-aux-4-dual-led-off-road-work-light-cree/1729/#tab/Specifications
https://www.superbrightleds.com/moreinfo/led-work-light-lights/led-work-light-6-rectangle-17w/3253/#tab/Specifications
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Brightness (L) 725 1800 1300 

Beam Angle 120º 60º 60º 

Power (W) 6 20 13 

Environmental 
Envelope 

IP67 IP68 IP67, -40º C ~ 56º 
C 

4.3.17.3 Selection 
For a light source mounted on the front facing surface of SigSent’s 

abdomen, the WL-17W-RE60 light bar is most appropriate, with relatively good 
power efficiency, an appropriate beam angle which isn’t dispersing the light too 
much and sufficient environmental protection. 

4.3.18 Power System 
Figure 21: Power Flow Diagram 

 

4.3.18.1 Solar Panels 
A solar panel will be explored as a potential candidate to provide an 

extended period of life for the SigSent robot while it undergoes outside surveillance 
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during the day. The solar panel would need to take weight and power into account 

to provide any significant benefit to the SigSent’s operation. 

4.3.18.1.1 Potential Options 

• DFRobot FIT0333 

• Seeed Technology Co. 3W Solar Panel 138*160 

4.3.18.1.2 Requirements 

• Surface area smaller than the robot’s abdomen, where it’ll be mounted. If 
As many units as possible will be arranged to fit on the surface. 

• Suitable for area of operations temperature range. 

• Relatively efficient. 

4.3.18.1.3 Comparison Table 
Table 19 Solar Panel Comparison 

Part # FIT0333 3W Solar Panel 138*160 

Environmental 
Envelope 

-40º C ~ 80º C, 
“Performance: corrosion, 
moisture” 

"Robust sealing for out 
door applications” 

Dimensions 6.500" L x 1.496" W x 
0.020" H 

5.43” L x 6.3” W x 0.060” 
H 

Power Density 60 W / m2 135 W / m2 

4.3.18.1.4 Selection 
The 3W Solar Panel is the more suitable option for our purposes because 

of its significantly higher power density, which will enable it to provide more energy 
to SigSent throughout the day. 

4.3.18.2 Solar Charger 
A solar charger is necessary to handle the charge produced by the solar 

panel, and distribute the current produced between the battery and spontaneous 

load.  

4.3.18.2.1 Requirements 

• Needs to be able to charge a 4 cell LiPo battery. 

• Needs to be able to handle at least 3 W of solar power. 

4.3.18.3 3.3 V Regulator 

• Needs to provide at least 100 mA of current. 

• Needs to have mild ripple. 

• Needs to accept at least 16.8 V input. 

4.3.18.4 5 V Regulator 

• Needs to provide at least 30 A of current. 

• Needs to have at most mild ripple. 

• Needs to accept at least 16.8 V input.  

• Needs to be highly-efficient to minimize heat dissipation 

https://www.digikey.com/product-detail/en/dfrobot/FIT0333/1738-1244-ND/7087141
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/313070001/1597-1414-ND/5488054
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4.3.18.5 12 V Regulator 

• Needs to provide at least 20 A of current. 

• Needs to have at most mild ripple. 

• Needs to accept at least 16.8 V input. 

4.3.18.6 Light Switching Transistor 

• Needs to be able to switch at least 2 A at 16.8 V or more. 

4.3.19 Signals Protection System 
A signals protection system is wanted, especially on any signals going into 

or coming out of the Raspberry Pi since the GPIO pins are very sensitive to 

transients and overvoltage’s. Since this platform is a prototype where lots of 

manual interactions will be going on, chance of an ESD event or a miss-wiring are 

high which means that the protection PCB will be significantly useful in 

safeguarding our project.  

To protect SigSent from ESD events and transients a very common and 

well-respected system is to use Zener clamp diodes in a way specified by NXP for 

i2c:  

 

Figure 22: Example of i2c ESD Protection [43] 

To protect general GPIO Ports from ESD and overvoltage events is to use 

normal Zener diodes in a pair for bi-directional communication:  
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Figure 23: Example of GPIO ESD Protection [43] 

To Protect our TTL Serial buses, NXP Recommends similar Zener Clamping 

Diodes explained in the below diagram:  

 

Figure 24: Example of TTL Serial ESD Protection [43] 
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And Finally to protect our USB Lines from ESD Events, NXP Recommends the 

following array of Zenner clamping diodes.  

 

Figure 25: Example of USB ESD Protection [43] 

Beyond ESD Protection it is important to protect the power lines of our 

devices to prevent things such as miss-wiring the boards or plugging in a power 

source in the wrong direction. A common a method to efficiently prevent reverse 

polarity events is to use a PMOS connection like described in the figure below 

created by Texas Instruments: 

 

Figure 26: PMOS FET in Power Path for Reverse Circuit Protection [44] 
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To Prevent an overcurrent situation, fuses will strategically and minimally be 

placed on all power buses to prevent an overcurrent event either damaging the 

battery, destroying sub systems, or causing an electrical fire.  

4.3.20 Base Station 
The base station computer will encompass the hardware necessary to 

communicate with the SigSent unit. Any item necessary in the remote operation of 

the robot by the user will be listed below with its relevant requirements and final 

selections. 

4.3.20.1 Laptop 
The laptop is where the GUI program will be run that communicates with 

the SigSent robot. The program is not computationally expensive. It allows for a 

connection to the robot over Wi-Fi, a video feed from the robot, remote operation 

through a joystick, and debugging over the air. The actual computation and 

calculations performed for the operation of the robot’s autonomous intelligent 

systems and control systems are all being done on the actual robot’s 

microcomputer, not the base station laptop. 

4.3.20.1.1 Requirements 

• Bright enough screen to be easily visible outdoors so that the operator can 
stay close to SigSent if necessary. 

• Man portable so that a user can easily bring it with them to the area of 
operation. 

• Can reliably run ROS Kinetic Kame and rqt, the software used to 
communicate instructions to SigSent. 

• Can connect to the same Wi-Fi network as SigSent. 

• Enough battery life on one charge to last as long as SigSent does on one 
charge, so that SigSent isn’t left stranded because its controller is unable to 
communicate instructions to it. 

• Contains a USB port compatible with the joystick. 

• Outputs headset audio and receives microphone input. 

4.3.20.1.2 Selection 
A Lenovo ThinkPad laptop on hand will be utilized as the base station. It 

meets the requirements listed above and will reduce the cost of the unit for our 
development. 

4.3.20.2 Headset 
A headset is necessary for listening and communicating through the 

SigSent robot. The base station allows for the user to listen to audio being received 

by the robot’s speaker. The microphone on the headset will be used as an audio 

input into the base station GUI program that will be outputted from the SigSent 

speakers so that vocal responses can be projected from the robot. 
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4.3.20.2.1 Requirements 

• Ergonomic and comfortable to wear outdoors for an extended period of 
time. 

• Contains a microphone so that the operator may communicate vocal 
commands over SigSent’s speaker. 

4.3.20.2.2 Selection 
A conventional headset on hand will be utilized. 

 

4.3.20.3 Joystick 
A joystick is used to facilitate the remote operation procedures through the 

base station GUI program. The joystick brings an intuitive method of moving the 

robot by the human operator. By simply tilting the joystick, the robot will move 

accordingly, as controlled by its control system and AI intelligent system. 

4.3.20.3.1 Requirements 

• Ergonomic so the robot can operate by the same user daily without strain 
from repeated use. 

• Intuitive operation and translation of control inputs into XY motion so that 
operators can begin using SigSent with minimal training. 

• Interfaces with the base station via USB cable. 

4.3.20.3.2 Selection 

A joystick on hand, the Logitech Extreme 3D Pro Joystick will be used. It 

contains more than enough usability for our project with multiple axes of rotation 

(pitch, yaw, roll). 

4.3.20.4 Router 

In order to communicate with the SigSent unit at distances greater than 

possible with an ad-hoc network from the basestation, a wireless router can be 

connected to the base station laptop. A router on hand, a Linksys WRT54GC, will 

be utilized to minimize project cost. To maximize range and throughput of the 

router, it should utilize its fastest available protocol, 802.11g, and a channel on the 

2.4 GHz band. Power for the router will be provided through a USB cable from the 

base station’s laptop. With this configuration, bandwidth should be sufficient to 

support streaming of video, audio, and diagnostics, estimated to be approximately 

5 Mb/s [7]. The router will utilize WPA2 Personal (AES) security to ensure 

confidentiality and integrity of communication between the base station laptop and 

SigSent unit. 
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4.3.21  SigSent’s Sensors and Non-Mechanical Parts 

 

Figure 27: List of Parts with Annotations 
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5 DESIGN 

5.1 DESIGN SUMMARY 
After researching the potential parts for consideration in section 4, each 

sensor and individual component was objectively scored/compared such that the 

most fitting option under our design constraints was chosen. These modules will 

be used in the design of SigSent. Below are high level overviews on the hardware 

and software in block diagrams that denote each module and its division of labor 

among each team member according to their individual specifications. The 

hardware schematics are designed and discussed below in their respective PCB 

sections. The software design decisions are discussed and followed by UML class 

diagrams and use case diagrams to scaffold out the individual, complex modules 

for SigSent’s code. 

5.2 HARDWARE DESIGN 
Because of the immense amount of components involved in SigSent’s 

operation, the hardware design includes schematics on the integration of each 

sensor and its supporting hardware in the robot. The design of each schematic 

follows our design constraints and standards previously mentioned, and the 

schematics include each relevant component that was selected in our hardware 

research. 

5.2.1 High Level Hardware Block Diagram 

 

Figure 28: High Level Hardware Block Diagram 

5.2.2 Hardware Design Overview 
Hardware Design is split into five main section: wheels, legs, power source, 

main sensors, and base station.  
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 The Wheels and Legs sections closely mirror each other, in the motor 
section, we have four high torque brushless motors each connected to an 
Electronic Speed Controller (ESC) which inputs a PWM and outputs the proper 
phasing required to drive the DC brushless motor, and with the servo we input a 
PWM signal and the servo motor then rotates to a predefined angle attached to 
that PWM value. There is also a current sensor monitoring the amount of current 
going to the motor or servo motor to detect whether or not the motor or servo motor 
is completing its desired task. Both the PWM signal and the current sensor output 
are converted into an I2C Signal which passes through protection circuitry and 
goes to the microcomputer which will input and output data to and from the motors 
and servo motors. 

In the power source section, we have the battery which sends data through 
a Fuel Gauge which then outputs the status of the battery (voltage, current, 
coulombs consumed) through the I2C interface, passing through I2C protection 
circuitry and then to the microcomputer which uses the battery data to send alerts 
or modify its path to be more energy efficient focused.  

For the main sensors section, we have a USB hub connected to the 
microcomputer which connects most of the sensors together such as the camera, 
lidar, the wireless network, IMU, and GPS.  

The base station section is separate from the robot and acts as a control 
point for the robot’s supervisor to access, control, or receive alerts from the robot 
- the base station stays in near continuous communication with the robot through 
a wireless connection. 

5.2.3 Protection PCB  
A protection PCB is wanted, especially on any signals going into or coming 

out of the Raspberry Pi since the GPIO pins are very sensitive to transients and 

overvoltage’s. Since this platform is a prototype where lots of manual interactions 

will be going on, chance of an ESD event or a miss-wiring are high which means 

that the protection PCB will be significantly useful in safeguarding our project.  

5.2.4 Control System PCB 
This PCB will be designed, tested and created in Senior Design 2 as well 

as having documentation on it made for this report. 

This design will consist of the microcontroller unit and with a serial (UART) 

communication port connected to the Raspberry PI for incoming status/goal 

updates on the hexapod’s orientation and commands for the current leg 

configuration. This will also include the pulse width modulation extender that 

connects to and controls the leg joints via the servo motors. 

5.2.5 Power Systems PCB 
This PCB will be created in Senior Design 2 with updated documentation 

here. 
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 The power systems PCB design will manage the power distribution amongst 

each component such that it does not exceed our power constraints and each 

component receives the operating conditions it requires. 

5.2.6 GPS Module 
The GPS module PCB will handle communication between the sensor and 

the microcomputer over I2C. Its needed power requirements will be fed to it as 

well. 

5.2.7 IMU Module 
The IMU module PCB will cover the connection between the IMU and the 

microcomputer such that its values can be read by the intelligent systems software 

modules to aid in the terrain classification based on the vehicle’s orientation and 

angular acceleration (movement due to rough terrain). 

5.2.8 Battery Fuel Gauge PCB 
The battery fuel gauge PCB will interact with the battery such that the 

remaining battery life can be read to be displayed to the user in a readable format 

in the base station GUI application. 

5.2.9 Light Bar PCB 
The light bar PCB will interface the lighting system with the robot. Its power 

and integration with the SigSent system will be interfaced here. 

5.3 SOFTWARE DESIGN 
SigSent’s software will be organized modularly for each discrete system. The 

high-level planning of the software is discussed with accompanying block 

diagrams, and UML for class diagrams and use case diagrams. The software is 

designed with the highest usability and maintainability in mind. Design principles 

and architectures are compared and selected based on their strengths for SigSent. 

5.3.1 High Level Software Block Diagram 
The software block diagram in Figure 29: High Level Software Block 

Diagram displays the modular design of the software. The division of labor is also 

visible by the colors denoted in each block. 
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Figure 29: High Level Software Block Diagram 

5.3.2 Software Design Overview 
The software will encompass the code for the autonomous performances 

on the robot. The design processes for development are discussed below. Each 

development procedure was chosen for the most streamlined development 

process. 

5.3.2.1 Design Methodologies 
Our team will be using the Scrum framework for agile software 

development. It is used commonly in small teams of rapid development cycles. 
While developing, daily 15-minute meetings are conducted where each developer 
discusses their progress from the day prior as well as what tasks they plan to tackle 
on that current day. Every two weeks, a sprint planning meeting is conducted so 
that a new set of tasks can be allotted for the two-week development cycle. These 
sprints are exactly as they sound, a fast, brief time span, where each developer 
takes a task from the remaining list of those allotted and tries to complete them all 
before the end of the two-week period. A Scrum Master, who acts as the manager 
of sorts, keeps the group on track and focuses on improving the team’s velocity 
over the development time. At the sprint planning meeting, a retrospective is 
performed on the previous two weeks where the Scrum Master will help guide the 
team in a discussion on the main events of the sprint. If the velocity of the team 
was low, the team must figure out why that occurred and what can be changed to 
improve that in the future. The sprint retrospective can then be demonstrated to 
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the product owner or stakeholder if necessary, however for our time, that will not 
be needed. Although there will only even be a couple programmers working on a 
part of the project at once, having a design methodology outlined will keep the 
team on track and will also expose everyone to a real software engineering 
environment and show how useful agile methodologies are in the workplace [45].  

5.3.2.2 Technology 
The intelligent system technologies used in SigSent’s software backbone 

will consist of the artificial intelligence software suite provided by NEAT’s 
neuroevolution on an artificial neural network, as well as the terrain classification 
used to define the nearby landscape that the robot is navigating across. OpenCV 
will be used as well in the stack to provide detection of movement of intruders to 
alert the user monitoring the SigSent robot. ROS will be used to manage the control 
signals to and from the robot’s sensors and motors. The High-Level Software Block 
Diagram in 0 demonstrates how each technology is associated with the other 
significant modules to our project. There are some extensions viewable in the block 
diagram that are not essential to the project at this time. The Path Planner module 
will be used for future work. It relies on the success of the control systems and 
NEAT AI modules and can only be integrated when they are fully functional. 

5.3.2.3 Architecture 
The software architecture will follow a singleton design pattern for each 

intelligent system. The NEAT system will be managed by a single overarching 
class that will do the evolutionary computation work as well as communicate with 
the ROS modules. In Singleton’s, if a reference does not exist, it is created and 
returned to the user. If a single static reference already has been created, then a 
new one is not created; The single reference is returned instead. By following the 
singleton design pattern, we ensure that only one single reference to the ANN will 
be used everywhere in the code. Singletons are necessary when the programmer 
must enforce this idea. Design patterns like this can strictly followed by forcing it 
upon the code rather than on the developers and users. The machine learning 
system that handles the terrain classification will also feature a singleton for the 
same advantages. 

 

Figure 30 Singleton example. Public Domain, https://commons.wikimedia.org/w/index.php?curid=1484985 
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The publish-subscribe (also informally called pub-sub) model will be used 
heavily as well as it pertains to ROS. In ROS, there are nodes that publish topics 
that others can subscribe to. In this case, data from SigSent’s sensors and 
intelligent systems can be easily passed between fragments of code by simply 
“subscribing” to the whichever information is needed by that node/class. The 
publish-subscribe design pattern is very scalable. In the case that new, more 
intelligent systems are provided, or additional data inputs are necessary, new 
nodes in the dependency/usage graph can be added. There can also be additional 
complexity in how the data is used and filtered by the subscribers. If many nodes 
need to strip the sensor data to a new, parsed format, a new node can be added 
that performs that filtering and then publishes this new data for others to take 
advantage of. 

 

Figure 31 Sample diagram representing basic Pub-Sub 

5.3.2.4 Class Diagrams 
Class diagrams help visualize a lower level of the program’s structure (while 

still at some high level of abstraction). In the planning stages of software 

development, it is important to plan out what classes will be necessary and how 

they will be managed. Inheritance and OOP concepts like polymorphism can be 

discussed in this stage such that the program can be developed in the most 

readable/usable manner. Below are the two intelligent systems modules with plans 

for their possible methods and instance variables. 

5.3.2.4.1 Terrain Classifier Class Diagram 

The terrain classification system is intended to be much simpler than the 
neuroevolution performed in the mobility mechanism decision process. A simple 
Artificial Neural Network (ANN) is created and trained against a test set of data 
(sample or artificially created data mimicking that from the LIDAR unit and camera) 
with outputs for what type of terrain those inputs should be classified as. By running 
a backpropagation algorithm, described in a former research section, the ANN has 
its weights updated such that training set of data passed to the train_classifier 
method is accurately classified. Backpropagation updates the ANN’s weights by 
calling the update_weight method in the ANN’s data structure class. After training 
the classifier, the classify_terrain method should be able to precisely decide what 
terrain is being imaged by the inputted LIDAR and camera data. These inputs are 
passed to the ANN housed within this class where the output is given by the 
compute_output method. The main classifier class must take the int output from 
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this method and choose one of the enum values for TerrainType, whichever one 
corresponds to the ANN’s output.  

 

 

Figure 32 TerrainClassifier Class Diagram 

5.3.2.4.2 NEATManager Class Diagram 

The NEATManager class is used to communicate between the ROS 
backbone and with the multi-terrain NEAT classifier. There are three main ways to 
run the manager, as a training session with a provided list of sample data (like 
when being run OFF of the robot, in a simulation), with live data streamed from 
ROS containing information about what is happening at discrete ticks in real time, 
or as a normal run where one-time step’s input is sent and run through the ANN, 
with a single output being returned to enable or disable to multi-terrain setting. The 
ROS nodes responsible for this knowledge transfer will carry sensor data and 
mobility classifications to and from the NEATManager.  

There are also useful methods for outputting data on the current 
feedforward ANN that exists in the manager. The ANN can be outputted as an svg 
image, displaying the nodes and weighted connections in a graph. The average 
speciation of the last training session can be shown as well. This will display how 
significantly different network topologies propagated throughout the search so that 
we can decide if the search space was properly explored to find the current best 
network. The statistics of the latest training session can be viewed as well. The 
output_stats method can be used to display this information, regarding best fitness 
values discovered, at what iteration they were found in, and training rates for the 
improved learning that took place over time. This can be helpful in seeing if the 
training was effective in improving over time, if suboptimal (local maxima) solutions 
were found and escaped from, and depending on the concavity of the fitness 
scores, whether our number of generations in training the NEAT ANN was long 
enough. If the fitness was still continuously improving, training time can be added 
such that we do not finish running the session until some horizontal asymptote is 
found and the fitness has leveled off. Positive concavity would show that the fitness 
is increasing more over time and that there is still a lot of hill climbing for the 
intelligent system to complete to find the best-fit ANN topology and weight 
combination. 
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Figure 33 NEAT Class Diagram 

5.3.2.5 Use Case Diagrams 

UML Use Case diagrams are a high-level representation on who will interact 

with the software (known as actors) and which features they will be able to access 

and enable within the program’s bounds. The interactions between the human 

user, base station controller, and the SigSent robot are noted below. In most UML 

use case diagrams, relationships for “include” and “extend” are shown in the actor 

associations. Since our actors have many single actions with little association 

necessary to denote, our use case diagram showing each module’s abilities and 

program responsibilities does not include this extraneous relationship [46].  

The user’s actions are displayed as what steps they can take through the 

GUI program to interact with the base station, and through that, the SigSent robot. 

Their first action necessary to work with the robot is to launch the base station 

program (assuming that the base station is turned on and fully operational through 

testing). The user can speak into their microphone and listen from their speaker 

with the headset peripheral to use the audio communication capabilities. The user 

can also use the GUI to view the camera feed from the robot. This is the user’s 

main source of sentry abilities. They will be able to do surveillance remotely with 

the robot in this manner. 
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The base station program is responsible for being the effective middle man 

medium through which the user communicates with the robot. The base station is 

connected to the robot through Wi-Fi from which it gains the necessary statistics 

and diagnostics from the robot’s sensors. These diagnostics are shown visually in 

the GUI mockup in the prototyping section 0. The diagnostics include information 

on remaining battery life, IMU values, terrain classification by the terrain classifier 

class shown above in its class diagram in section 5.3.2.4.1. The base station will 

transfer the joystick inputs coming from the joystick to the robot to be used in 

moving the unit according to the direction of the joystick.  

Finally, the SigSent robot has its own level of interaction with its features. 

Each action it is associated with is related with its high-level feature list described 

from the requirements and objectives. The SigSent robot will send audio using its 

local microphone mounted on the robot to the base station. The audio will be sent 

over the Wi-Fi connection it has established with the base station. The robot will 

output audio from the user’s microphone on the base station headset via the 

robot’s speakers. The robot will be moved through the TeleOp feature whenever 

the user is using their joystick and enabled the TeleOp mode, rather than the 

Sentry mode, in the base station’s GUI program. Only when these conditionals are 

made true will the robot be moveable from the base station’s joystick commands. 

The robot’s sensor information is sent to the base station in real-time for active 

debugging and for ease of use. Without information like the battery life, the user 

would not be able to effectively operate the robot without worrying about the robot 

becoming stranded or failing while at work in a mission critical situation. The 

SigSent robot will be sending raw values for its sensors to the base station to lower 

the computational load on the robot’s microcomputer and microcontroller operating 

environment. The base station GUI program will handle any necessary sanitization 

of inputs and beautifying the outputs to be as readable as possible. Finally, the 

SigSent unit will be changing its mobility mechanism dependent on the NEAT 

artificial intelligence module in the intelligent systems section. This is the main, 

sophisticated operation of the robot featured in SigSent. 

While these actions associated with each operating actor seems minimal, 

the infrastructure supporting each miniscule action contains significant overhead 

in discrete calculations and CPU computation, and code supporting it all. The class 

diagrams outline the software’s high-level plan as “code” while the use case 

diagrams note what each system’s level of interaction is and their possible actions 

they may take. 
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Figure 34 UML Use Case diagram on User, Base Station, SigSent interaction 

 

5.3.3 State Machine 
SigSent will have three main states: Sentry State, Patrol (Walk Path) State, 

and Interface State. There will also be several other meta states such as Alert, and 
Status.  

In Sentry State, SigSent stays motionless in a designated spot and stands 
watch while processing camera and lidar data looking for anomalies and unknown 
behavior. Upon detection of any unknown behavior the state will exit and change 
to the alert state.  

In the Patrol (Walk Path) State, SigSent walks along a preprogrammed path 
(a set of GPS waypoints previously programmed) and sends those goals to the 
path planner which determines the ideal path for SigSent to take depending on 
priority between time, energy, and risk to robot. Once the path planner determines 
the ideal path it will send a vector to the Active Suspension Program which will 
then calculate the ideal values to send to its motors and suspension system based 
on various sensor data and the output of a NEAT ANN trained to determine which 
terrain mode the robot should use.  Upon detection of any unknown behavior the 
state will exit and change to the alert state. 
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In Interface State, SigSent can send status and telemetry to the base station 
containing information such as battery percentage, live streaming the camera on 
SigSent, and viewing the current state of the NEAT ANN. In Interface State the 
robot can also be programmed with a new GPS waypoint path, teleoperated, or 
have the operator's voice transferred to output on the robots speaker.   

the Alert State is only entered when either the sentry or patrol state detect 
a human presence. When this happens the robot will send an “ALERT” signal to 
the base station where the base station will be alerted to the unknown behavior. 

The Status state is only entered when the robot has been placed in a 
situation that the robot deems needs human intervention but is not an alert. Things 
such as low battery, stuck in terrain, or otherwise unknown or diagnostic mode. In 
this state GPS beacons are sent to the base station to better help humans find the 
robot.   

5.3.4 Base Station 

 

Figure 35: Base Station GUI Diagram 

A base station will be used to communicate with and remotely operate the 
robot. Alerts and warnings from the robot encompassing low battery levels and 
motion detection will always appear on the main screen of the GUI. The GUI is 
accessed by a single administrator log-in manually created when setting up the 
system to prevent prying eyes. The user can selectively view the status of the 
vehicle (including battery levels, raw sensor data, and the current CPU load), 
watch a streamed video feed from the robot’s camera, and remotely control the 
robot with a Logitech Flight Stick (Extreme 3D Pro Joystick). The TeleOp control 
also allows for the user to speak into a microphone at the base station that will 
then project the audio from the robot’s attached speaker. 
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5.3.5 NEAT 

 

Figure 36: NEAT ANN Diagram 

 Using the NeuroEvolution of Augmenting Topologies (NEAT) library, the 
robot will learn to alternate between mobility types based on the environment it is 
traversing. Throughout the learning phase, NEAT will create Artificial Neural 
Networks (ANNs) that a Genetic Algorithm (GA) will use and score based on their 
performances. Each ANN is used in a test environment where sensor values are 
passed as inputs into the network to receive some desired output values. A camera 
and LIDAR will be used to identify what kind of terrain the robot is moving over, 
which is then sent as an input into the network. The IMU will pass its rotational 
acceleration values as a second input. The output is a binary value of what type of 
mobility mechanism to engage. The best ANNs are used to create a new 
population of networks, using popular genetic operators from biology, including 
crossover and mutation. Crossover occurs more frequently, moving values from 
performant networks to create successful offspring. Mutation continues to add 
diversity to the population so that NEAT properly explores the domain’s search 
space.  

 

Figure 37: Example Generated Neural Network 

In the example above, the gray squares are the input nodes and the blue 
circles are the output nodes. This minimal example was performed in a command-
line environment using a 2D grid as the environment, where a robot is an object 
on the map (with a location designated by its x and y coordinate on the grid) and 
has access via “sensors” to its four neighboring cells in each compass direction in 
a non-toroidal map. The four neighboring cells are inputs into the ANN. Four of the 
five outputs correspond to the future direction the robot will be headed in, where 
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the node with the highest output value decides what direction the robot takes. The 
final output node chooses what mobility type the robot will enter prior to moving. If 
the robot attempts to move onto a cell labeled as being a “rocky” environment, it 
must have the proper mobility mechanism engaged before it can actually move 
onto the new cell. A fitness score is assigned based on how far the robot travels, 
as well as how many unique cells it visits. Based on this fitness, this ANN can be 
compared to the performances of the other ANNs in the GA’s population to decide 
on what network topologies will continue to proliferate and what search directions 
should be pruned. 

As shown in the graph to the right Figure 38: Fitness of the Example 
Network, the average fitness is steadily growing while the best seen fitness value 
makes jumps whenever a new, well-performing ANN is discovered. A better ANN 
results in a better “brain” controlling the robot. Higher fitness values can be 
achieved by modifying the NEAT parameters to be more optimal for this specific 
use case. The generation limit should be increased until the fitness levels off at an 
acceptable value. Additional time should also be considered to account for the GA 
struggling to break away from suboptimal extrema. 

 

Figure 38: Fitness of the Example Network 

5.3.6 Kinematics of Movement 
In order for the robot to know how to walk, an algorithm is needed so the 

robot can figure out how to move its legs. The robot can’t just flop its legs around 
in a random fashion as this would not guarantee a stable movement for the main 
body of the robot. It also can’t have hard coded movements for its legs as this 
would not allow for a robust and adaptive mode of mobility, and would spell disaster 
as the robot would hit rough terrain with heights and obstacles unknown and 
inevitably fall over. The way to solve this is with kinematics of movement/rotation. 
With techniques in this field, a model and algorithm for an individual leg, then for 
the chassis with all the legs can be created. This would be converted into code for 
the on-board computer to handle the desired movements. This algorithm will then 
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be tested and validated in Gazebo until it is tuned for the Ideal movement scheme 
for the robot.  

These models and algorithms of the kinematic system of the robot will be 
created using two concepts called forward kinematics and inverse kinematics.  

5.3.6.1 General Set-Up 
Our robot’s system is comprised of six legs, each with three degrees of 

freedom. This ends with a total of 18 degrees of freedom for our system. To start 
the calculations, we need to simplify the system down to its non-
redundant/irreducible state. That is one leg with three joints or three degrees of 
freedom as shown in the figure below: Figure 39: Diagram of a single leg of SigSent 
Robot demonstrating three jointed members. 

 

 

Figure 39: Diagram of a single leg of SigSent Robot demonstrating three jointed members. 

To simplify it even further we can look at the outer two joints of the leg 
excluding the joint connecting directly to the chassis, which makes for a problem 
with only two degrees of freedom as shown in the figure below: Figure 40: 
Kinematic diagram of two degree of freedom linkage system [47]. The paper 
reference for the figures below were modeling a robotic arm but the it still applies 
to our robot leg if you think of the first joint as the origin instead of the base of the 
system.  



88 | P a g e  
 

 

Figure 40: Kinematic diagram of two degree of freedom linkage system 

This system can now be reduced down to a representation linkage system with 
linkage members as lines and joints as connecting nodes. From there the simple 
linkage dimensions can be derived from simple geometry and trigonometry in an 
XY cartesian coordinate system or even a radial/circular coordinate system. From 
this we are able to visually see and represent the end point or the robot’s end 
effector for the linkage system as point, P. We also label all measurements such 
as the lengths of the linkages, l, and angles of the of the linkages with respect to 
our frame of reference and relating the subsequent dimensions of all linkage’s end 
effects that cause the position of the final end effector.  This is shown in the figure 
below: Figure 41: Trigonometric kinematic diagram of two degree of freedom 
linkage system [47].  

 

Figure 41: Trigonometric kinematic diagram of two degree of freedom linkage system 

Our reasoning for this simplification is that the joint that we are excluding 
only deals with rotation in a purely z-axis motion, while the other two joints dictate 
the extension of our legs and where they will fall on the ground. Thus, making it 
that these two joints are responsible for the contact with the ground to ensure a 
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firm foot hold and in the end balance of the overall system, the excluded joint ends 
up contributing more to the directional movement of the system. While these 
assumptions previously stated for the simplification do hold true in the case 
presented, they will not always hold true when moving the robot over rough and 
rugged terrain, but for the fundamental derivations we will be looking at the 
simplified two degree of freedom model to start. This model allows us to solve for 
our scenario via trigonometry. 

A common method that is used represent and solve for these linkage 
measurements is the Denavit-Hartenberg parameters. “These are four parameters 
that are associated with a particular convention for attaching reference frames to 
linkages of a spatial kinematic chain. [48]” The four parameters that define the 
Denavit-Hartenberg model are the link length (ai), link angle(αi), link offset(di), and 
joint angle(θi). These four parameters relate the next link to the current link with 
their respective frames of reference. This is shown in the below figure: Figure 42: 
Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg 
parameters definition [49]. 

 

Figure 42: Representational kinematic diagram for Forward Kinematic Denavit-Hartenberg parameters 

definition 

These parameters can be simplified for our scenario down to the joint angle 
and the link length. This only holds true since the axis of rotation for the joints are 
parallel for this scenario.  

Both Forward and Inverse kinematics solutions can be solved for using either a 
trigonometry or Denavit-Hartenberg parameters. 



90 | P a g e  
 

5.3.6.2 Forward/Direct Kinematics 

One of the techniques used that is to create the control algorithms in each 

of the legs and joints of SigSent is forward or direct kinematics. This 

implementation and derivation will be discussed below for a simplified version of 

the leg (two-linkage system) and then the true arm (three-linkage system) for 

algorithm simplification in certain case and scenarios for the rough terrain 

movement. 

5.3.6.2.1.1 Forward Kinematics Two-Linkage Implementation 

The concept of forward kinematics is very similar to most problems solved 
in math courses and the one people will be most familiar with. Forward kinematics 
is a solution to the model of a system given all the inputs of that system. So given 
the system from the general setup section, if we wanted to know where the end 
effector of our leg would land then we would simply need to give the system some 
inputs for the length of the linkages and angles of rotation provided by the servo 
motors once they are calibrated and the final coordinate of the end effector for the 
system can be solved for as the desired next position. From this desired position 
in space, we can solve for the resulting heights and widths of the linkages and 
determine from the boundary condition discussed before to verify if this desired 
position is possible given our environment and current position or if our joints will 
end up reaching a limiting angle of rotation.  

This the forward kinematics algorithm for movement is simple and 
straightforward but if the system doesn’t have quite a few sensors available on 
them a lot of the resulting effects on the system's stability of the desired next 
position will remain unknown unless tested. Additional if the wrong inputs are 
chosen and calculated to cause an issue with the system then a whole new set of 
inputs will have to be selected and the end effector recalculated. This has the 
potential to pull a lot of resources from the on-board computer and could end up 
delaying other system responses, if the operations take too long to solve for a 
viable solution. This makes higher degrees of freedom models too costly to control.  

 This method will be a good for and implemented for solving the simple and 
quick movements over a relatively smooth or flat surface but would not do so well 
for us under rough terrain that requires precise placement of footing for the stability 
of the system. 

 The derivations for the two-arm linkage system starts with the derivation of 
the Denavit-Hartenberg parameters. Shown above in the general set-up section. 

Table 20: List of Forward Kinematic Denavit-Hartenberg parameters 

Link 𝜃𝑖  𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖  

1 𝜃1 0 𝑎1 0 

2 𝜃2 0 𝑎2 0 
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From this the matrices that define the system can be created. With the 
shorthand notation of ci & si being equal to cos θi & sin θi respectively, θ1 + θ2 by θ12, 
and cos(θ1 + θ2) as c12, we obtain the matrices shown below [49]. 

 

𝐴1 =  [

𝑐1 −𝑠1 0 𝑎1𝑐1

𝑠1 𝑐1 0 𝑎1𝑠1

0
0

0
0

1 0
1 1

] 

𝐴2 =  [

𝑐2 −𝑠2 0 𝑎2𝑐2

𝑠2 𝑐2 0 𝑎2𝑠2

0
0

0
0

1 0
0 1

] 

Equation 7: Foward Kinematic Denavit-Hartenberg Matrices 

This then leads to the derivation of the T matrices which yields:  

 

𝑇1
0 = 𝐴1 

𝑇2
0 = 𝐴1𝐴2 =  [

𝑐12 −𝑠12 0 𝑎1𝑐1 + 𝑎2𝑐12

𝑠12 𝑐12 0 𝑎1𝑠1 + 𝑎2𝑠12

0
0

0
0

1 0
0 1

] 

 

Equation 8: Derivation of the T Matrices 

From these matrices the position of the end-effector in relation to the base 
frame is given by the first two elements in the last column of T2

0. This is shown 
below [49]. 

𝑥 =  𝑎1𝑐1 + 𝑎2𝑐12 

𝑦 =  𝑎1𝑠1 + 𝑎2𝑠12 

Equation 9: Position of the End-Effector in relation to Base Frame 
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5.3.6.2.2 Forward Kinematics Three-Linkage Implementation 

Similarly, to the derivation above in the inverse kinematic for the two-linkage 

system, we can solve for the three-linkage system of the whole leg. For this we will 

use the Denavit-Hartenberg parameters again this time with the values for alpha 

and d not equal to zero since the axis orientation from the first joint to the second 

aren’t parallel. Thus, ending up with this general form of a transformation matrix 

from linkage I to linkage i-1 [50]. 

𝑇2
0 =  [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝛼𝑖 𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛𝛼𝑖 𝑎𝑖𝑐𝑜𝑠𝛼𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖 −𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠𝛼𝑖 𝑎𝑖𝑠𝑖𝑛𝜃𝑖

0
0

𝑠𝑖𝑛𝛼𝑖

0
𝑐𝑜𝑠𝛼𝑖 𝑑𝑖

0 1

] 

Equation 10: General Transformation matrix for the forward kinematics three-linkage system 

The resulting coordinates for the end effector can be solved for which 

results in the equations below. [50]. 

𝑥 =  𝑐𝑜𝑠𝜃1(𝐿1 + 𝐿2𝑐𝑜𝑠𝜃2 + 𝐿3cos (𝜃2 − 𝜃3)) 

𝑦 =  𝑠𝑖𝑛𝜃1(𝐿1 + 𝐿2𝑐𝑜𝑠𝜃2 + 𝐿3cos (𝜃2 − 𝜃3)) 

𝑧 =  𝑑1 + 𝐿2𝑠𝑖𝑛𝜃2 + 𝐿3sin(𝜃2 − 𝜃3) 

Equation 11: Position equations solutions from the Forward kinematics implementation 

From this derivation the position equations (x, y, z) for the end effector has 
been solved for. This allows us to put in values for the linkage lengths and angles 
of the servo motors to get a resulting position. These equations will be a step 
toward the gait generation method. 

5.3.6.3 Inverse Kinematics 

One of the other techniques that is used to create the control algorithms in 

each of the legs and joints of SigSent is inverse kinematics. This implementation 

and derivation will be discussed below for a simplified version of the leg (two-

linkage system) and then the true arm (three-linkage system) for algorithm 

simplification in certain case and scenarios for the rough terrain movement. 

5.3.6.3.1.1 Inverse Kinematics Two-Linkage Implementation 

The concept of inverse kinematics is the opposite of forward kinematics. We 
need to solve for the inputs/angles of the joints of the system that would result in 
a desired end effector position. While it is more versatile and popular in a lot of 
applications, can be quite difficult to solve and may not even have a solution or a 
unique one either. The solution can be solved analytically but some cases require 
a numerical solution as the equations might not be directly solvable. This make 
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boundary conditions, initial inputs, and the very dimensions/structure of the linkage 
system is very important to include to the derivation and solution.  

 While it is costly to compute via this method it can deal with higher degrees 
of freedom and give precise desired movement once finally solved. This method 
will be a good for and implemented for solving the complex movement needed for 
traversing over rough uneven terrain. A simple distance sensor is needed to find 
approximate distance from the robot chassis to the ground and then the equations 
can be solved to get the desired position of the robot's legs that would keep stability 
in the system. 

The derivations for the two-arm linkage system starts with the derivation of 
the Denavit-Hartenberg parameters to solve for the known general solution of the 
system. This equation relates the base frame of reference to the frame of reference 
of the end effector. This transformation matrix can be described by the 
multiplication of the reference frames of every joint down to the end effector in 
series [47]. 

𝑇𝑒𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒 = 𝑇1

0 ∗ 𝑇2
1 ∗ … ∗ 𝑇𝑛

𝑛−1  

Equation 12: Transformation Matrix 

The base transformation matrix can also be defined as the matrix 
representing the rotation elements of the system as well as the position of the end 
effector. Shown below [47]. 

𝑇𝑒𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒 =  [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22
𝑟23 𝑝𝑦

𝑟31

0
𝑟32

0
𝑟33 𝑝𝑧

0 1

] 

Equation 13: Transformation Matrix based on Rotation Elements 

Definition of the Denavit-Hartenberg parameters are shown below in the 
figure and table below: Figure 43: Representational kinematic diagram for Inverse 
Kinematic Denavit-Hartenberg parameters and Table 21: List of Inverse Kinematic 
Denavit-Hartenberg parameters [47]. 



94 | P a g e  
 

 

Figure 43: Representational kinematic diagram for Inverse Kinematic Denavit-Hartenberg parameters 

 

Table 21: List of Inverse Kinematic Denavit-Hartenberg parameters 

Link 𝜃𝑖  𝛼𝑖−1 𝑎𝑖−1 𝑑𝑖  

1 𝜃1 0 0 0 

2 𝜃2 0 𝑙1 0 

3 0 0 𝑙2 0 

 

From this, the linkage transformation matrices that define the system can 
be created. With the shorthand notation of cθi & sθi being equal to cos θi & sin θi 
respectively, we obtain the matrices shown below [47]. 

𝑇1
0 =  [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 0

0
0

0
0

1 0
0 1

] 

𝑇2
1 =  [

𝑐𝜃1 −𝑠𝜃2 0 𝑙1

𝑠𝜃2 𝑐𝜃2 0 0
0
0

0
0

1 0
0 1

] 
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𝑇3
2 =  [

1 0 0 𝑙2

0 1 0 0
0
0

0
0

1 0
0 1

] 

Equation 14: Transformation Matrices for each Joint 

From a general solution described above and simple matrix manipulation 
we can obtain the equation shown below [47]. 

 

𝑇1
0 −1 ∗ 𝑇3

0 = 𝑇2
1 ∗ 𝑇3

2
 

Equation 15: General Solution of Transformation Matrices of each Joint 

After the multiplication of the defined matrices we obtain the partial solved 
equation of [47].: 

 

[

. . . 𝑐𝜃1𝑝𝑥 + 𝑠𝜃1𝑝𝑦

. . . −𝑠𝜃1𝑝𝑥 + 𝑐𝜃1𝑝𝑦

.

.
.
.

. 𝑝𝑧

. 1

] = [

. . . 𝑙2𝑐𝜃2 + 𝑙1

. . . 𝑙2𝑠𝜃2

.
0

.
0

. 0
0 1

] 

Equation 16: Partially Solved Transformation Matrix 

This will result in solutions for θ1 & θ2. Starting with θ2 we can square both 
matrices and set the elements [1,4] and [2,4] of both matrices equal to each other. 
After some simple algebraic manipulation, a solution for θ2 arises shown below 
[47]. 

 

 

 

Equation 17: Algebraic Manipulation of Transformation Matrices 
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For θ2 we can derive a solution from Table 2 in Reference [47]. This leads 
to a solution of: 

 

𝜃2 = 𝐴𝑡𝑎𝑛2 (∓√1 − [
𝑝𝑥

2 + 𝑝𝑦
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
]

2

,
𝑝𝑥

2 + 𝑝𝑦
2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

Equation 18: Solution for θ2 

For θ1 we can use elements [2,4] of both matrices and set them equal to 
each other [47]. 

 

Equation 19: Partial Solution for θ1 

We can then derive a solution from Table 2 in Reference [47]. This leads to 
a solution of:  

𝜃1 = 𝐴𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥)

∓ 𝐴𝑡𝑎𝑛2(√𝑝𝑦
2 + 𝑝𝑥 − (𝑙2𝑐𝜃2 + 𝑙1)2, 𝑙2𝑐𝜃2 + 𝑙1 

Equation 20: Solution for θ1 

With the two joint angles solved for we have a completed solution for the 
inverse kinematic algorithm for our legs. As stated above we the inverse kinematic 
solution will need boundary/limiting condition to avoid unwanted behavior in the 
leg movements as this derivation leads to multiple solutions for our desired 
positions. 

5.3.6.3.1.2 Inverse Kinematics Three-Linkage Implementation 

Similarly, to the derivation above in the inverse kinematic for the two-linkage 

system, we can solve for the three-linkage system of the whole leg. For this we will 

use the Denavit-Hartenberg parameters again this time with the values for alpha 

and d not equal to zero since the axis orientation from the first joint to the second 

aren’t parallel. Through basic trigonometry some angle values can be solved given 

the figure shown below [50]. 
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Figure 44: 2D planar view of the joints of SigSent’s leg. 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑦1, 𝑥1) 

Equation 21: Solution for θ1 

 With use of a transformation matrix to convert the end effector coordinates 
to the coxa frame. A solution for the remaining angles was derived. [50] 

𝜑1 = 𝑎𝑡𝑎𝑛2(𝑦3, 𝑥3) 

𝜃2 = 𝜑2 = 𝑎𝑐𝑜𝑠 (
𝐿2

2 + 𝑎2 − 𝐿3
2

2𝐿2𝑎
) +  𝑎𝑡𝑎𝑛2(𝑦3, 𝑥3) 

Where 𝑎 =  √𝑥3
2 + 𝑦3

2 from law of cosines 

𝜑3 =  𝑎𝑐𝑜𝑠 (
𝐿2

2 + 𝐿3
2 − 𝑎2

2𝐿2𝐿3
) 

𝜃3 = 𝜋 − 𝜑3 

Equation 22: Angle equations solutions from the Inverse kinematics implementation 

From this derivation the angle equations for the joints of the leg have been 
solved for. This allows us to put in a desired coordinate for the leg to move to and 
the required servo angles to achieve that coordinate can be solved for. These 
equations are will be a step toward the gait generation method, just as the forward 
kinematics solution would be. 

5.3.6.4 Gait Generation 

One of the concepts that is used to create the control algorithms of 

movement for each of the legs and joints of SigSent is Gait Generation. The 
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different possible techniques that will be used in an effort to generate the different 

gaits will be discussed below 

5.3.6.4.1 What is Gait? 

In reference to SigSent, gait refers to the style or manner that the hexapod 

will walk, this inherently refers to the line of motion in 3D space the legs make for 

the hexapod to move in any direction as shown in Figure 45:Gait path diagram 

below [51]. Gait usually is designed to emulate insectoids already in nature to 

attempt to maintain efficiency and natural looking movements. They are usually 

modeled after sinusoidal wave forms to attempt to match a natural arching curve 

in the stride forward. There are multiple methods to solve and model for gait, those 

are the attempts made to find the best method and solution to a gait generator for 

SigSent. 

 

Figure 45:Gait path diagram [51] 

5.3.6.4.2 Gait Generation via Kinematics modeling 

This method involves modeling the exact path the legs will take to perform 

its gait. This is usually done path planning with a polynomial function of sorts to 

create a known value that the leg is desired to reach. Then the path is broken up 

into important key frames that the legs must reach. The values of the key frames 

are then put through the forward or inverse kinematic equations to get the 

subsequent values needed for the servo motors to reach the desired values.  

In order to generate the commands needed to reach the key frames that 

are defined the kinematics modeling of forward and inverse kinematics must be 

already done as to find the coordinate locations of the desired configuration or joint 

angles must be definable or solvable. This method involves a more brute force 
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technique in order to generate the desired gaits of the hexapod’s legs. While this 

is the case, this method still does provide appropriate solutions for the gaits. 

5.3.6.4.3 Gait Generation via Neural Networks 

This method of gait generation follows the same principle that is defined in 

the sections 4.2.6.2 about reinforcement learning & 5.3.5 about NEAT. A random 

set of gaits will be generated and populate the system. The gaits will then be tested 

in simulation and given fitness values based on the performance of the different 

gaits. From the results, based on known outputs or targets the weights for the 

Neural Networks are recalculated in either a forward or back propagation fashion 

and the new gaits are tested on the system for a new set of outputs. 

5.3.6.4.4 Gait Generation via Genetic Algorithm 

Once the kinematic models of the system are derived and defined, the set-

up for the Genetic algorithm can take way. Gait, for this method, can be defined as 

a sequence of consequent steps where every following step is a derivative of the 

state of legs from the previous step. The state of each leg can be defined in terms 

of three angles from the three joints [52]. These three joints are put into a 

vector/matrix format to represent each leg and its current state. Each step of the 

system can then be modeled as the six states of the legs or 18 angles values in 

total. A gait can then be seen as the number of states/steps that it takes to 

complete the motion and repeat all over again. So, gait is a vector holding N 

number of steps. Each step holds 18 state values that define the position of the 

servo motor at that consequent step. The genetic algorithm is used in an attempt 

to find the optimal values for the states to have a walking mechanism that follows 

the modeled used for the ideal gait.  

The genetic algorithm starts with a random generation and population of 

gaits. The gait’s performance is then tested and simulated, then based on its 

performance from criteria we determine we can assign it a fitness value. This is 

done until the most optimal gaits for this generation are produced. Then 

“offspring”/children for the next generation of gaits are produced from those optimal 

gaits of the previous generation/parents in an attempt to find a stable optimal 

generation better than the previous generation. This process of testing, simulation, 

and reproducing is repeated until the most optimal gaits for our design is produced. 

This process model can be seen in the Figure 46: Genetic Algorithm Model below. 
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Figure 46: Genetic Algorithm Model [52] 

This method will be modeled following the paper: “Adaptive Gait Generation 

for Hexapod Robot using Genetic Algorithm” [52], that was published in the IEEE 

international conference paper on Power Electronics, Intelligent Control and 

Energy Systems.  

5.3.6.4.5 Gait Generation via fuzzy algorithms 

Once the kinematic models of the system are derived and defined, the set-

up for the fuzzy algorithm can take place. Fuzzy logic is method that closely 

emulates the thinking process of natural human brains. It is also a way of mapping 

the input states to the output states of the defined system. This is done with 

computers by creating in-between values to the 0 and 1 or false and true paradigm 

that is implemented with systems. So, in the case of SigSent, instead of exact 

coordinates/joint angles generated or desired by the system, states of distance 

defined as very near (VN), near (N), far (F), and very far (VF) are created. Similarly, 

five different fuzzy values are assigned for both angle and deviation, namely left 

(LT), ahead left (AL), ahead (A), ahead right (AR), and right (R) [53]. This process 

of fuzzy logic definitions in turn is creating regions of position for the hexapod to 

follow. This creates a scenario where the hexapod robot can “understand” if it is 

accomplishing the goal of, for example, moving forward. 

This “fuzzy algorithm” is then created with the foundation of fuzzy logic 

implemented on the different states of the legs on the hexapod robot and genetic 

population and modification of generations from Genetic algorithms. The model for 

this algorithm can be see below in Figure 47: Model of GA-Fuzzy Algorithm. From 

this figure it can be seen that the input is made up of states of the environment that 

are known and states of the robot that are known as well. This gets processed 

through the Fuzzy Logic Controller and produces an output. These outputs are 

then put through a genetic algorithm to process crossover and mutate to create 

the next generation of gaits and paths. The system is ran again until the tuning 

from the genetic algorithm has converged on an optimal gait and path  
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Figure 47: Model of GA-Fuzzy Algorithm [53] 

This method, in all, creates optimal path and gaits generated by using fuzzy 

logic controllers and generic algorithms to find optimized fuzzy logic controllers that 

are then used to maneuver and manipulate the hexapod robot in test-case 

scenarios [53].  

This method will be modeled following the paper: “Optimal path and gait 

generations simultaneously of a six-legged robot using a GA-fuzzy approach” [53], 

that was published in the Elsevier journal on Rob0tics and Autonomous Systems 

[53]. 

5.3.6.5 Open-Source Kinematic Tools 
For basic simulation and testing there is a forum of community of creators 

around the Trossen Robotics that have some test programs and open source 
calculation tables to help with certain types of hexapods and crawling robots. 
MatLab’s community based forum also has quite a few tools available to the public 
from Mathworks themselves and from community creators that are sharing their 
projects with everyone else. The fundamental understanding of kinematics is 
necessary for navigation of these tools that are available to the community. These 
tools though only help with simple derivation of some kinematic characteristics for 
the robot. 

For final, simulation, testing, and verification Gazebo will be used. This will 
use to put the algorithm a test of various conditions to verify if the algorithm 
produced is sufficient to control the robot’s movements. 
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5.4 MECHANICAL DESIGN  
The mechanical design of SigSent will be based on the hexapod robot design 

found common in many commercially available multi-terrain robots today with the 
addition of motorized wheels to four of its six legs. This allows SigSent to use it’s 
hexapod movement method across rough terrain or move through smoother 
surfaces efficiently in a traditional wheeled configuration.  

 

Figure 48: Rendering of SigSent in Wheeled Mode 

 

Figure 49: Rendering of SigSent in Terrain Mode 
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6 PROTOTYPING 

6.1 SCHEMATIC 
Schematics are produced for each module’s PCB layout to plan out the 

overall design of the circuit. Below are schematics and discussions on the PCB 

layouts for each module. 

Below is an image describing the schematic for the PCB prototype of the 

protection circuit. 

6.1.1 Protection Circuit PCB Prototype 

 

Figure 50: Picture of I2C Protection schematic 

6.2 PRINTED CIRCUIT BOARDS 
SigSent will have several printed circuit boards to accomplish the level 

functionality of the robot including system protection, signals transfer, and power 

transfer as well as a platform for some sensors and actors. Below are the designed 

printed circuit boards including figures and some rational of the design for that 

specific board.  

6.2.1 PCB Design Considerations 

While designing the PCB boards, special consideration was made to keep 

decoupling capacitors and charge pump capacitors as close to the IC’s they were 

operating on as possible to reduce impedance.  

6.2.2 Breadboard Test 

Before proceeding with the final PCB design, a test was done with the 

components on a breadboard to verify that the microcomputer was working 

correctly with the sensors that it will be interfacing with in the PCB. The results 

from testing the sensors for valid output are shown in sections 7.1.5 and 7.1.6. 
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Figure 51 Breadboard test with Raspberry Pi microcomputer connected to GPS and IMU sensors 

6.2.3 PCB Designs 
The Below sections are the specific screenshots of the circuits boards designed. 

As we progress into Senior Design 2 this section will considerable as we make 

more and more of the circuits boards that are necessary for a safe and operational 

platform.  

6.2.3.1 Protection Circuit PCB Prototype 

 

Figure 52: Picture of I2C Protection PCB Design Top Layer 

 

Figure 53: Screenshot of I2C Protection PCB Design Bottom Layer 
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6.2.4 PCB Fabrication and Assembly 
We will contract with a third-party PCB fabricator, providing them with our 

completed schematics. We anticipate working with OSH Park during next 

semester’s senior design course. To assemble the boards, the boards will be 

soldered on location within the Robotics Club at UCF laboratory. Techniques to 

create proper solder bonds will use a combination of hand soldering and hot-air 

reflow soldering depending on the specific package being soldered.  

6.3 GUI MOCKUP 

 

Figure 54 Basestation GUI mockup 

The graphical user interface (GUI) will feature a live video feed, streaming 
from the SigSent robot. The GPS location will be featured on an interactive map 
applet. There will be buttons that the operator will use to interact with the robot. A 
radio button section is used to switch between the sentry and TeleOp movement 
modes of the robot. The battery level of the robot is shown as well to give a better 
idea on the estimated time remaining for operation. The actual GUI will be 
developed with an educational/open-source Qt license with Python. It will be made 
to resemble this working prototype as closely as possible as our team found this 
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model to be the most intuitive to work with and the flat modern style keeps 
consistency with applications created today. 

The top-left image view is a camera feed coming from the SigSent robot. It 
will feature rich video controls for controlling audio levels and viewing the video in 
a full-screen view. Underneath the video feed are radio buttons for changing the 
operating mode of the robot. Sentry mode and TeleOp mode are the two main 
operations for SigSent. In Sentry mode, the robot will remain in a single position 
as an active video input. In TeleOp mode, the operator will be controlling the robot 
with their joystick that is plugged into the base station. 

The map view on the top right will be using the GPS signal from the SigSent 
to give a fairly accurate location of the robot. A marker will be placed to display the 
robot among the map’s visual representation. Since the battery level is related to 
its travel, the estimated remaining battery life is displayed in a filled bar below the 
map. This information comes from the robot’s “fuel gauge” sensors. Based on the 
remaining battery life and the location of the robot, the user will know how much 
farther they can travel without stranding their unit. 

To aid in debugging the intelligent systems, a table is displayed underneath 
both visuals that display the terrain classification, IMU values, and the final NEAT 
output from the artificial neural network. Seeing the SigSent sensor values and 
intelligent systems output will ensure that the system is functioning correctly. 
Without a visual aid for this, it is hard to be sure that the system is being used at 
all, especially if the mobility mechanism is not switching (either due to a hardware 
failure or due to the ANN simply not outputting a new value as its been trained). 

The GUI program will be built with a Python module, PyInstaller, that will allow 
it to be compiled into a native executable for Windows, macOS, and Linux 
operating systems. This means that changing base stations to communicate with 
the robot will be a painless process if the desired computer is not on-hand. The 
base station’s computational requirements are not very heavy, so any computer 
should be usable for this process. 

6.4 PROTOTYPE EXPECTATIONS 
The prototypes for the hardware and software components were made to test 

components and to demo component and code functionality. The prototypes 

should be used to ensure that the hardware and software is functioning so that the 

real integration testing on the physical system can be put into place. Below are 

issues that could occur with the prototyping and some consistent errors that were 

experienced. 

6.4.1 Potential Hardware Issues 
There are several potential issues to worry about as far as the hardware is 

concerned. There are the obvious faults such as poor design of the circuit boards, 

designing boards that introduce impedance or create unacceptable EMI, the same 

thing holds for improper wiring. Improper Soldering could create intermittent 
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problems that could be hard to diagnose – it will be very important to properly 

inspect each solder joint and ensure to check solder joints again if intermittent 

issues appear during testing and application. Other issues that might arise are 

overheating issues as the leg subassemblies each consume a considerable 

amount of power and could generate enough heat to potentially damage some 

control components in Florida’s hot weather, especially since the robot operates 

outside. Beyond design issues for hardware there is the human to consider, we as 

imperfect being can cause significant problems even in a well designed system 

(that does not account for human interaction). Proper case to ESD harden 

sensitive circuitry such as the GPIO pins on the Raspberry Pi, and to properly and 

visibly label the connectors that go into SigSent will be very important. Beyond 

things that will be interacted in normal operation, proper labeling and color code 

standards will need to be enforced uniformly throughout the construction of the 

vehicle to prevent human errors such as miss wiring a connector or plugging a 

connector into the wrong port. With proper design and training these issues should 

be minimized but will still always be an ever-present risk.  

6.4.2 Potential Software Issues 
Potential software issues include the obvious bugs that could be present in 

the code leading to faults. Running unit tests attempts to capture these errors 

before running everything in production. Every sensor and communication device 

needs to be set to use a constant address space or IP address identifier such that 

the code can be statically coded and work every time. 

A common error that was occurring in Ubuntu MATE with the Raspberry Pi 

was a disk space error as the microcomputer was running low on available 

memory. Initially, an 8GB SD card was used in the Pi. After running into numerous 

disk space issues, it was upgraded to a 64GB card. All of the necessary libraries 

and frameworks being used (ROS, OpenCV, NEAT, etc.) required several 

gigabytes of storage each. Since most of the space needed to run SigSent is 

allocated before runtime, there should not be a high risk of reaching a disk space 

error in operation. 

 

Figure 55 Ubuntu MATE low disk space error 
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A potential issue in the intelligent systems module pertains to how well it is 

trained. If the robot is trained with a terrain type and is then placed in an 

environment radically different from its training data, it will not perform optimally. 

In some situations, the operating location can change quickly without warning, 

especially in some critical application where there is no time to retrain the robot 

(e.g. military applications). In this case, the robot would not operate correctly and 

could possibly cause harm to the people relying on the successful function of the 

robot. To avoid this issue as best as possible, the robot will be trained in a variety 

of locations. Since Florida, the host location of SigSent, is not varied in terrain 

types, small demoable environments will be recreated for small-scale training 

sessions. These should be sufficient for our operations, however for something 

more significant, extensive testing and training will need to be done in real 

locations that closely resemble those of the places the robot will be actively used 

in. 
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7 TESTING 

7.1 HARDWARE TESTING 
The hardware components that were selected and purchased for use were 

tested according to their procedures listed below. Images corroborating the 

successful tests’ results accompany the procedures’ outlines. 

7.1.1 Raspberry Pi 3 Microcomputer Testing 

The Raspberry Pi 3 will be tested for being operational. It will be assumed 

to be working as intended if boot-up and an SSH connection has been established. 

Its complete functionality will be decided by the correct operation and 

communication between its sensors and miscellaneous connected components.  

To further test the Raspberry Pi, we conducted a test of SSH using a local 

network and what will be our base computer. This is a simple test and allows for 

us to work remotely on SigSent without having to directly plug into the vehicle. This 

also allows for the vehicle to roam wirelessly while we monitor the vehicle through 

SSH without becoming tangled or unplugged as the robot moves around.  

 

Figure 56: Screenshot of successful login of SSH over Wifi from a base station computer to SigSent's 
microcomputer 

7.1.2 Microcontroller Testing 
The microcontroller was assumed to be operating correctly based on its 

working functionality in integration with the robot’s control systems. Signals will be 

sent to each joint’s respective servo to move in 10-degree angle increments. If 

each motor is correctly accessed and moved with the necessary measured 

precision, the microcontroller will marked as testing successfully. 
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7.1.3 Lidar Testing 
To test the lidar, which using serial communication through the ACM0 

protocol we used a ROS node called URG_NODE which is specifically designed 

to interact with the Hokuyo brand of lidar sensors including our UTM-30LX. 

URG_NODE reads in the sensor data and reformats it into the standardized ROS 

message named laser_scan in the topic /scan. From there we both visualize and 

confirm the relative accuracy of the Lidar data in RVIZ compared to what we are 

seeing and we can view the raw data by echo’ing the rostopic /scan in the 

Command Line Interface (CLI).  

 

Figure 57: Visualization of Lidar Data in RVIZ 

 

Figure 58: Raw Lidar data echo'd from the ROS topic /scan 
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7.1.4 Camera Testing 
The camera was connected to the Raspberry Pi and a basic image was 

captured indoors in a low-light environment. Even with suboptimal conditions for 

lighting, the image was still captured at an acceptable quality. SigSent will be 

operating outside. As such, daytime sunlight will provide more than enough lighting 

for basic sentry operations and surveillance capture. During its nightly patrols, the 

powerful LED light bar mounted on the robot will illuminate the area in front of the 

camera’s field of view. Below, in Figure 59 Camera test indoors in low-light, clear 

colors, contrast, and sufficient optical quality are seen. Highlights are overblown in 

the ceiling lights, however this is normal for a low-light scenario to compensate for 

the poor illumination throughout the laboratory room. The camera adjusts its 

exposure settings as such to provide an average normal exposure that is viewable 

in bright and dimly lit environments. The tests provided showcase that the camera 

will be acceptable for the minimal computer vision computations we will be doing 

for terrain classification and basic human/anomaly detection. 

 

Figure 59 Camera test indoors in low-light 

 

7.1.5 IMU Testing 
IMU Testing for the MPU-9250 was conducted by hooking up the sensor 

and reading its values through serial in Linux and confirming that they changed 

logically as we moved and rotated the sensor around. Once we have the robot fully 

assembled more in-depth tests can be made, however to simply confirm that the 

sensor is outputting data in the expected fashion this test was proved successful.  

7.1.6 GPS Testing 
GPS Testing for the Venus 638FLPL was conducted at UCF’s Partnership 

II and III campus. The testing process was to bring the GPS unit outside hooked 

up the Raspberry Pi 3 through a TTL serial feed. The GPS outputs a constant 
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stream of NMEA GPS data which we then parsed into to standard GPS 

coordinates, which we then fed into Google Maps to confirm that the GPS points 

were accurate. We found that the GPS points were very accurate outside and 

confirmed its location on Google Maps to well within the specified 2.5 meters of 

stated accuracy. We also found that indoors the GPS did not perform well and 

often was not able to contact enough satellites to output a valid GPS point. Since 

the vehicle will be outside this is considered a non-issue, but may present 

problems during presentations and demos if conducted indoors.  

 

Figure 60: Testing output of NMEA GPS data from GPS Unit 

 

Figure 61: Confirming accuracy of GPS data by placing GPS coordinates into Google Maps [54] 

7.1.7 Servo motor Testing 
The servo motor characteristics of stall torque, stall current and weight will 

be measured and tested. To test the stall torque characteristic of the servo motor 
a known weight on a cantilever at a set(adjustable) and known distance will be put 
on the servo motor. The servo motor will then be commanded to rotate with 
increasing distances applied to the weight up to create increasing torques on the 
servo motor. This will be done until the known stall torque has been reached or a 
smaller stall torque has been reached. The stall current will be measured and 
tested during the testing of the stall torque by actively measuring the current 
applied to the servo motor at the time of testing. A fuse, or emergency stop will be 
implemented to ensure no damage to the servo motor when stall has been 
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reached. The weight of the servo motor will also be measured to ensure the proper 
product within design has been obtained. 

7.1.8 Motor and ESC Testing 
A tachometer will be used to measure the RPM of the motor to determine if 

it meets the specifications required by the robot and as notated in its datasheet. 

The motors will be run using their standard operating voltage. If the motors reach 

the necessary speed, the testing will be determined as successful. 

7.1.9 Battery Testing 
The battery’s capacity will be tested by measuring the time it takes for the 

battery to “die” while under a predefined load. The battery will be charged until the 
voltage across its terminals reads 16.8 V with a multimeter. A stopwatch will 
engage when a 10 A constant current dummy load is first attached to the battery’s 
terminals and will stop when the voltage across the terminals measures 13.6 V 
with a multimeter. To be considered minimally successful, the time must be greater 
than or equal to 1 hour.   

7.1.10 Speaker and Amplifier Testing 
Test tones at various frequencies within the voiceband will be played from 

the speaker system at maximum volume, and will be measured with a sound level 
meter from 10 meters away. At minimum, the test will be considered successful if 
the meter reads a level greater than 60 dB for a 4 kHz test tone. Human hearing 
is typically most sensitive near this frequency [55], which makes it suitable for use 
in a siren. 

The utility of the speaker system would be further validated with sound level 
measurements significantly greater than 60 dB across the voiceband. Additionally, 
reliable comprehension of vocal instructions 10 meters from the speaker system 
would demonstrate full success of the audio system design. 

7.1.11 Microphone Testing 
To test the microphone being used on the robot for basic operational 

situations, it will be connected to the Raspberry Pi microcomputer and debugged 

in Ubuntu Mate for proper feedback. If the operating system’s audio manager 

cannot receive input from the microphone, it will need to be debugged. If the 

microphone interfaces correctly, it will be successfully tested. Its specifications for 

recording were known through the hardware research and further testing on these 

parameters is unnecessary if the operation of the device and its integration goes 

smoothly. 

7.1.12 Lighting System Testing 
The lighting system will be tested for sufficient illumination and operating 

times. A light meter is used to capture how much light is being output by the 
system. The lighting system must provide the illumination specified by the 
requirements in section 4.3.17.1. The lighting system will be run for two hours to 
verify that it is still operational after a long duration. The operational time is meant 
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to test if the lighting system can reliably operate for the entire duration of the robot’s 
battery life. Two hours is much higher than the upper-bounds given in the 
requirements section: 4.3.13.3. If it lasts two hours without any issues, it will be 
decided to be sufficient.  

7.1.13 Power System Testing 
All components need sufficient power to turn on and operate. The voltage 

and current at each node for a component will be tested such that each component 
is receiving the correct amount for operation. Incorrectly delivering the wrong 
values could damage our components. After testing that everything is under the 
correct operating constraints, the components will be tested for correct 
functionality. 

7.1.14 Signal Protection System Testing 
To test the Protection System we will purposefully introduce ESD and 

transients events into signals lines while measuring with an oscilloscope and 

ensure that the various Zener diode clamps properly clamp those events.  

To test reverse circuit protection we will reverse the power input to SigSent 

with all vulnerable devices removed and check that the reverse current does not 

pass through the protection method, this will be checked via a multimeter.  

To test overcurrent protection, a fuse will be hooked up to a battery with 

high power low ohm resistors to create an overcurrent event with the fuse inline, 

the circuit will be closed creating the overcurrent event and the event timed to 

ensure that the fuse opens at the expected time. 

7.1.15 Base Station Testing 
The base station testing encompasses testing that the computer is working 

as well as the GUI program that communicates with the robot. The computer will 

be booted up and verified that it is functional. The base station’s GUI program will 

be launched to verify that it is able to correctly communicate with the SigSent robot. 

If the robot is able to be reached from the base station, then the testing will be 

marked as successful. 

The peripherals for the base station will need to be tested in conjunction with 

the laptop as well. The joystick will be tested in the Windows Joysticks tool, where 

inputs can be shown as being received by the operating system. If the joystick has 

been correctly installed to work with the OS, then it will be tested in the base 

station’s GUI program for correctly controlling the SigSent robot in TeleOp mode. 

The headset used for listening and vocally communicating through the robot will 

be tested as well. The default Windows playback/recording devices menu will be 

used to ensure that the operating system is receiving input and producing output 

through the headset device. The GUI program will then be run as well to test if the 

headset is receiving audio from SigSent and also outputting audio from the 

microphone through the robot’s speaker. 
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7.2 SOFTWARE TESTING 
The software developed for SigSent must be rigorously tested in modular unit 

tests, in a simulated environment, as well as in the actual physical environment. 

The procedures to facilitate the testing are notated below. 

7.2.1 Software Testing Overview 
Testing is a necessary and important part of any software development 

lifecycle. Before code can pushed into a production environment, especially in a 
mission critical application, testing can be done to prevent errors from making it 
into a release. When working with physical hardware, where real harm can be done 
due to software mistakes, testing is very important. We will be employing a variety 
of techniques and frameworks discussed below to ensure that human faults do not 
lead to significant failures, or unexpected results. The unit tests will be done using 
Python’s included unit test library. Tests can be written to verify that every function 
returns the exact values that it is expected to. Edge cases can be easily tested in 
this method by calling each individual function with these obscure situations to 
check that they are functioning correctly. Integration tests are then run that 
combine modules of the software environment together to verify that the many 
software components still function as expected when working together. Integration 
testing will ensure that as new features are added, the overall quality of the 
SigSent’s performance is constant. 

7.2.2 Simulated Testing 
Gazebo can be used as a software solution for testing the ROS control 

systems code, the movement and gait generation algorithms, as well as the basic 
neuroevolution artificial intelligence work. The artificial intelligence can be run in a 
simulated environment; however, it must be used with caution as the data gathered 
in this way will not be accurate, or at least cannot be depended on. The simulation 
testing is to ensure that after each individual function and module has been testing 
in isolation and integration, that the robot as a whole works as intended. The 
artificial intelligence can only be tested for validation in the full simulated Gazebo 
environment and in the physical testing process. 

In Gazebo, a sample environment consisting of varying terrains for smooth 
and rough surfaces will be used to test SigSent in each of its possible operating 
conditions. Testing in a simulated environment, while not completely accurate in 
modeling true physical performance, allows for quick iterations in different locales. 
Obstacles can be added and removed as necessary to provide SigSent with a 
comprehensive setting for testing. As testing is done, the software can be modified 
as needed. The NEAT learning platform will be under the most scrutiny throughout 
the testing, as the training and neural network parameters are modified to produce 
the best possible results. 

7.2.3 Physical Testing 
After completing a successful iteration in each testing environment listed 

above, the software will be tested on the physical robot, if it is built and currently 

available for testing. Because of the physical limitations of the simulation, the 
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software will have to be modified for usage in tests with the actual SigSent robot. 

Parameters will be modified in the code pertaining to the movement and learning 

methods to have the best performance. Changes will be quickly made and re-

uploaded to the robot to test in the physical environment until an acceptable 

performance is achieved. The base station GUI will be the most helpful throughout 

the physical testing process as it provides real-time updates on the robot’s sensor 

values and how it pertains to the intelligent systems’ artificial intelligence software 

modules. 

7.3 TESTING PLATFORM 
In order for our team to work in parallel while the mechanical system and 

control systems are being developed we are using the Clear Path Robotics 

Turtlebot 2 supplied by the Robotics Club at UCF to test the software and hardware 

that does not rely on our movement systems in a physical model. The Turtlebot is 

a simplistic framework of a robot that has a controllable base based off the 

Kobuki/Roomba platform and is designed specifically to be ideal for testing robotics 

with many mounting points and an easy interface to control with.  

On the Turtlebot we will be testing in real life, our lidar, IMU, GPS, and camera 

as well as eventually our power and protection systems will all be implemented in 

tested as a complete system on the Turtlebot using the state machine with GPS 

waypoint navigation and human detection. Once we have SigSent’s chassis and 

control system ready we will migrate all the systems being tested on the Turtlebot 

over to SigSent’s chassis for further testing.  

   

Figure 62: Picture of Turtlebot equipped with several of our sensors in anticipation of testing 
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8 ADMINISTRATIVE CONTENT 

8.1 SOFTWARE TOOLS 
In working on SigSent, several software tools were used for communicating 

between team members, developing the software/hardware implementations for 

the robot, and also in documenting the project. Each tool was essential in reaching 

our goals in developing and documenting SigSent. 

8.1.1 Communication 
Communication between team members is important to provide the best 

working environment. Being able to quickly get in contact with each other for 

meetings, to make ad-hoc design decisions, and working remotely was necessary 

for the tight deadlines we had to meet. The tools below encouraged this 

communicative process. 

8.1.1.1 Discord 
To foster better communication, our group used Discord. Using Discord, we 

were able to easily get updated information on everyone’s progress, as well as 
share useful links or images related to the project’s research. Our group had its 
own “server” that we could connect to, containing voice and text channels to 
communicate through. We utilized the voice chats during remote meetings when 
we could not meet physically. The biggest advantage to using Discord was that it 
featured this powerful communication platform for free. Slack, another free 
communication tool, does not feature the same rich, low latency voice connection 
as does Discord. 

8.1.2 Development 
The development of SigSent for both the software and hardware was 

achieved with the assistance of high-level software tools. Each tool used is listed 

below with a brief summary on its working purpose and why it was chosen for use 

in the SigSent project. 

8.1.2.1 MatLab 

 Used for computation of the Inverse and Forward kinematics of the 

hexapods movements for each individual leg. As well as used for the gait 

generation of the hexapod for normal movement patterns. With its multiple different 

library sets and use of the online community forum, the modeling of the kinematics 

was made simple and straight forward. Through the ease of matrix manipulations, 

function definitions, implementation of algorithms and interfacing with multiple 

other language sets, MatLab remains one of the best multi-paradigm numerical 

computing environments available to the public. For initial testing, MatLab also 

offers interfacing with hardware, that allows for testing with hardware out and in of 

the loop to test efficiency, accuracy, and feasibility in the system. The MatLab 

software is able to interface with the Raspberry Pi and various microcontrollers as 
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well, which allows for simulation and testing on the overall systems or each sub-

system individually. 

8.1.2.2 PyCharm 
PyCharm features plugins for use with ROS and the Raspberry Pi, making 

Python development on our platform easy to scaffold out. Although PyCharm is a 
commercial product made by the company JetBrains, they offer a free account for 
students, as well as free community editions of some of their IDEs (including 
PyCharm). The ROS plugin for PyCharm includes support for packages, code 
execution with roslaunch, node debugging, unit test execution and debugging, and 
custom message/service creation. The Raspberry Pi support is not via a direct 
plugin, however PyCharm features exceptional SSH and tunneling support to write 
code on a local machine and simply execute it over on the remote device, as well 
as the ability to connect to local database solutions running on the microcomputer. 
The neuroevolution and ROS modules will be done in Python, making PyCharm 
the obvious choice of IDE for our software development. 

8.1.2.3 DipTrace 
Used for PCB design, DipTrace is a software suite for creating schematics 

and PCB design as well as 3D visualization and 3D file exporting completed board 
with component representation. This software was provided by the Robotics Club 
at the University of Central Florida [40] and DipTrace [56].  DipTrace has an 
intuitive and quick UI/UX that allows for rapid development of hardware.  

 

Figure 63: Representation of Diptrace’s Schematic Capture and PCB Design applications [57] 

8.1.2.4 Git 
In the world of version control systems (VCS), Git reigns supreme in 

popularity. In 2016, RhodeCode did a study on VCS interest by reviewing their 
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presence in Google search trends. Git comprised 70% of searches compared to 
other systems, including (in descending order of search significance) Subversion 
(SVN), Mercurial, Perforce, and Concurrent Version Systems (CVS) [31]. We used 
Git as our VCS due to its obvious preference by developers, and previous 
experience that our group had with using it. Using Git, changes are tracked 
between the local files and the last committed changes to the repository. A commit 
essentially is a state in the Git graph that holds the exact version of every file in 
the repository, backed by a checksum to ensure that nothing differs from exactly 
what was saved by the user. Branches can be created as well, allowing specific 
tasks to be implemented in their own state, not interfering with the main master 
branch. The code added to the other branches can then be cherry picked over into 
the main branch by their commit hash. Git is also much faster when juxtaposed 
with performances of similar commands on competing other version control 
systems. Git is a free and open source software solution, released under the GNU 
GPL, open source license. 

8.1.3 Documentation 
The documentation for the project is all saved in one single location in the 

cloud, but is done across multiple websites that provide tools for each type of 

document. 

8.1.3.1 Google Drive/Docs 
Google Drive is where every file, excluding the source code, is stored. 

Google Drive also includes a web-based document editor via Google Docs. Google 
Docs also includes an editor for excel spreadsheets that we used to document part 
specifications and comparisons. Google Docs is where the project’s 
documentation was written collaboratively in the cloud. Our shared folder also 
acted as a remote backup for our documents for higher availability and reliability 
using a free solution. 

8.1.3.2 Draw.IO 
Most of the flowcharts and diagrams that we created were done with 

Draw.IO’s editor. They have seamless integration with Google Drive which made 
synchronization and collaboration easy. Draw.IO includes templates for many 
popular types of documentation diagrams. For the software class diagrams and 
other UML documentation figures, we were able to take advantage of Draw.IO’s 
handy pre-built blocks that conform to UML specifications. The class diagrams 
were essential to our development process to properly plan our architecture prior 
to actually implementing our ideas. Draw.IO improved our project’s scalability by 
keeping us focused on the big-picture overarching design such that we did not 
have to waste time refactoring code as the project grew in number of features. 

8.1.3.3 Microsoft Word SharePoint Document 
To increase the readability of our document, Microsoft Word’s shared 

collaborative environment will be used such that we can utilize their powerful 
document editing tools (with automatic table of contents for tables and figures, and 
automated bibliography generation for citation references). Google Drive is a safe 
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way to save all of our documents in one cloud-based storage solution, however 
Google Docs does not have the rich editing environment that Microsoft Word 
offers. When used in conjunction with our other documentation tools, we have 
created a streamlined, effective workflow for writing. 

8.2 DIVISION OF LABOR 
The division of labor between each group member can be more clearly seen 

in the block diagrams for both the hardware and software components from Figure 
28 and Figure 29. The milestones in 8.3 also outline each group member’s primary 
responsibilities and secondary responsibilities with defined deadlines. These 
deadlines are set-up into phases (Phase 1 – Phase 3) leading to the middle of 
senior design 2 where the rest of the project timeline will be created and assigned 
to the group members These deadlines are subject to change relatively to the 
current dates as the project timeline progress. 
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8.3 PROJECT MILESTONES 
 

Phase 
1 

Due 
11/30/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal 

Mechanical Design & 
Physical Creation 

Control System 
Legs (Sim) 

Power System 
Design 

Simulation 
Creation 

Backup 
Goal Simulation Creation 

Power System 
Design 

Mech Design & 
Creation 

Control System 
Legs (Sim) 

Tasks 

Complete Laser Cut 
Design 

Kinematic 
modeling of 

movement/legs 

Confirm sensor 
selection 

Setup VCS 

Create Laser Cut Model 
Kinematic 

modeling of whole 
body 

Calculate 
power & energy 

needs 

Familiarize with 
Gazebo 

Sponsorships/Discounts 
Input/feedback 
data for closed 

loop 

Design 
schematic 

Create basic sim 
environment 

Order Parts 
Movement pattern 
for different terrain 

Find Primary 
Source 

Components 

Move model SDF 
from Solidworks 

Wire Management 
Familiarize with 

Gazebo 

Find 
Redundant 

Sources 

Add necessary 
ROS connections 
to moving parts 

Complete 3D Printed 
Design 

Get necessary 
inputs for 
simulation 

Create BOM 
Follow ROS 

turtlesim docs 

Create 3D Printed Model  Determine wire 
routing 

Implement code 
to move robot 

Have Complete Platform  Order Parts Test/Debug 

 

Phase 
2 

Due 
1/31/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal ROS Integration 

Control System 
Active Suspension 

on Robot 
Communications 

Working on ML on 
Sim 
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Backup 
Goal Communications 

Working on ML on 
Sim 

Control System 
Active Suspension 

on Robot 

ROS Sensor 
Integration 

Tasks 

Create/find 
Packages-nodes-

publishers for each 
sensor 

Design active 
suspension 

implementations 

Design Base 
Station radio 

system 

Research potential 
computers/MCUs 

Create state 
machine for different 

modes 

Choose optimal 
designs for AS 

Design robot radio 
system 

Seek NEAT 
advising (Dr. Wu/Dr. 

Stanley) 

 
Input/Feedback 

from AS included 
in control 

Implement 
messaging 

framework from 
ROS 

Run small-scale 
NEAT tests without 

all sensors 

 Implement AS in 
control simulation 

Implement 
basestation 

command line 
client 

Use sensors from 
John's 

implementation 

  
Test connectivity in 

various 
environments 

Modify parameters 
and re-run 

 

Phase 
3 

Due 
2/28/2017 John Millner Josh Franco Jeff Strange Richie Wales 

Primary 
Goal ROS Path Planning 

Polishing Control 
Systems 

Teleop Control Neat on the Robot 

Backup 
Goal Teleop Control Neat on the Robot 

ROS Path 
Planning 

Polishing Control 
Systems 

Tasks 

Create local path 
planning for legs 

Results from 
Control Sim 

Design base 
station controller 

Run NEAT on 
robot 

Robot must avoid 
obstacles 

Test on different 
terrains 

Design base 
station GUI 

Seek advising on 
inevitable failures 

robot must path around 
obstacles on a global 

goal 

Test movement 
abilities from Sim 

Implement video 
stream 

Re-run training 
until viable result 
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robot must be able to 
move to a GPS 

Waypoint 

Optimize Control 
Systems 

Test, test, test 
Train for longer 
duration (TBD) 

robot must take goal 
vectors  

  Save best 
resulting ANNs 

 

8.4 BUDGET AND FINANCE 
 
Table 22 Initial Budget 

Part Number Description 
Unit Price 

($)* 
Total 

Quantity Total Price ($)* 

244000083-0 Motor 18.99 6 113.94 

FUTM0043 Servo motor 22.99 18 413.82 

595711 Wheel 1.995 6 11.97 

57155K383 Bearing 6.42 6 38.52 

92775A106 Shaft Set Screw 0.3476 12 4.1712 

91292A015 Motor Screws 0.218 24 5.232 

92290A474 servo motor horn screws 0.78 72 56.16 

98511A300 Wheel Screws 0.841 24 20.184 

91292A116 Servo motor Screws 0.0641 72 4.6152 

91854A101 Servo motor Nuts 0.1296 72 9.3312 

N/A Custom 3D Leg Prints 80 1 80 

N/A Custom 3D Abdomen Print 65 1 65 

3100 Camera 29.99 1 29.99 

3055 Microcontroller 35 1 35 

Z50003S-25 Battery 25.38 1 25.38 
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9192000310-0 ESC 10.53 4 42.12 

VN-200 IMU / GPS 2600 1 N/A 

GF0876 Speaker 5.02 1 5.02 

TS4962IQT Audio Amplifier 0.99 1 0.99 

URG-04LX-
UG01 Lidar 1100 1 N/A 

 
Robot Communications On-hand 1 N/A 

 
Basestation Communications On-hand 1 N/A 

 
Laptop On-hand 1 N/A 

 

Servo motor Controller 
Board 50 1 50 

 
Power Distribution Board 50 1 50 

 
Logitech Flight Stick On-hand 1 N/A 

 
SD Memory Card On-hand 1 N/A 

   
Total Cost: 1061.4436 

*note discounts and shipping costs not applied 

8.5 STRETCH GOALS 
In order to expand SigSent’s suitability to additional use cases, providing 

additional methods for human machine interface would make valuable stretch 
goals. Adding basic gesture recognition to SigSent’s computer vision system could 
enable SigSent to be a more valuable partner in a human machine pairing. An 
operator in the immediate view of a unit could wield quick and intuitive control over 
the robot. Gesture-based interaction with the unit could prove useful for stealthy 
operations or could enable interaction with nonverbal individuals. 

 Similarly, adding in voice commands would serve a similar purpose, albeit 
less stealthy. Voice commands could likely be more verbose, offering greater 
specificity for an operator to provide commands. 

 A mobile app would enable an operator to issue commands to a unit or to 
receive the audio/visual feed another unit when not in the immediate area. A 
mobile app could provide similar functionality to a base station in a lighter weight, 
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more mobile package. A mobile app could be designed to operate on both 
smartphones and tablets to leverage the devices many potential operators would 
already possess. 

Follow the Leader, cost analyses on paths to take, and autonomous 
investigation are all items that are considerations for future work. The follow the 
leader strategy has direct implications in the field of patrol and sentry surveillance. 
If a human security officer could walk their usual route while accompanied by the 
SigSent robot, the exact pathing could be saved by the robot and then executed 
for future patrols without the human’s assistance. This would mean that the human 
operator would not have to use the TeleOp feature to control the robot’s 
movements while attempting to do surveillance along a path. Another alternative 
to the follow the leader strategy would be to define a path on a GPS map that the 
robot then follows. The GPS technology is still necessary in either approach to 
maintain the desired path, however the human operator would have to be aware 
of the obstacles present along the defined path that they draw. While walking with 
the follow the leader mode enabled, the human operator would be able to steer the 
robot away from any obstacles that would interfere with the robot’s patrol. Added 
automation means lower operating costs for a security company and for less man-
hours spent maintaining the robot’s functionality 

Having a cost analysis on the pathing would mean that the shortest paths could 
be taken by the robot. Shortest path computations would be effective in rough 
terrain where taking a shorter path has a significant effect on how much energy is 
expended by the robot. If the computer vision and terrain classification system is 
sophisticated enough, then its roughness could be used in the movement costs as 
well. It could be that a longer path with a smoother terrain is the better travel option 
to save energy and to keep the robot from entering dangerously risky areas that 
could prove too difficult to traverse. 

Autonomous investigation functionality would mean that the human operator 
could step away from monitoring the patrol route taken by the robot and allow it to 
encounter anomalies on its own. Currently, the robot can alert the operator of 
detected movement so that the human can manually investigate. This still requires 
a human operator to be vigilant in watching the surveillance from the robot. 
Automating this feature reduces the chance of human faults. A human could miss 
something anomalous on the surveillance. The robot could detect movement and 
alert the user, however the user could be oblivious to the warning. Having the 
system operate intelligently on its own reduces the human interaction element 
(where the human element adds to the risk of errors). 
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9 CONCLUSION 

SigSent’s novel multi-modal terrain navigation methodology can provide 

significant gains in energy efficiency of locomotion while maintaining the all-terrain 

capabilities that a traditional hexapod platform offers. 

SigSent offers security professionals additional capability to complement and 
supplement their traditional organizational structure and roles. A network of 
SigSent’s can multiply the effectiveness of a single security guard, and enable 
quicker response over larger distances. 

SigSent relies on a wireless control architecture which incorporates a base 
station for an operator’s use.  Although this adds a constraint on the operation of 
the robot, wireless communication with Wi-Fi is ubiquitous in today’s modern 
society, where the Internet of Things (IoT) has dominated every market.  

Currently, Knightscope is the largest company producing autonomous 
sentry/patrol robots. Their products are aesthetically pleasing and seem to have 
feature-rich devices. Their systems, while featuring intelligent autonomous bots, 
do not break the mold in multi-modal terrain traversal. Our project hopes to expand 
on that aspect. The hexapod design lends itself to the ability to cross over rough 
terrains without the weakness of wheels. The neuroevolution system creates an 
ever-changing robot that continuously learns from its environments. SigSent 
boasts a robustness that not many platforms can offer. A robot that can adapt over 
time without the need for human intervention lowers operating costs and lowers 
the risk of obsolescence. 

With plenty of preemptive design planning and development done in this 
document, SigSent’s road to completion is well on its way as an affordable option 
for security. We hope to not only create a functioning product, but also a beautiful, 
unique design unlike anything currently on the market. We have challenged 
ourselves as engineers and also as innovators.
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